ИСПОЛЬЗОВАНИЕ СРЕДСТВ MS EXCEL ДЛЯ ПОСТРОЕНИЯ КВАДРАТИЧНОЙ МОДЕЛИ В НОРМАЛИЗОВАННОМ ФАКТОРНОМ ПРОСТРАНСТВЕ

Пусть в процессе эксперимента варьируются два фактора. Известно, что отклик линейно зависит от первого фактора и квадратично – от второго. Исходя из этого выбрана модель

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{22} x_2^2.$$

Для нахождения параметров модели выполнен эксперимент, план которого (в натуральных переменных), вместе с эмпирическими значениями отклика, приведен в таблице.

X_1	X_2	у
10	5	18
20	5	6
10	10	12
20	10	8
10	15	16
20	15	20

Требуется перейти к нормализованным переменным и найти коэффициенты ЭС-модели.

Пусть значения действующих переменных помещены в первые два столбца рабочего листа, значения отклика помещены в третий столбец. Основные уровни и интервалы варьирования в данном примере равны:

	Α	В	С
1	10	5	18
2	20	5	6
3	10	10	12
4	20	10	8
5	10	15	16
6	20	15	20

$$X_{1,0} = \frac{20+10}{2} = 15; \ X_{2,0} = 10; \ \Delta X_1 = \frac{20-10}{2} = 5; \ \Delta X_2 = 5$$

Пусть они записаны в ячейки от A8 до A11. Для нахождения матрицы плана в кодовом выражении поместим в две соседние ячейки какой-либо строки (в данном примере – строка 14) формулы

и переместим маркер автозаполнения на шесть строк ниже.

Базисные функции выбранной модели:

	Α	В	С	D	E				
1	10	5	18						
2	20	5	6						
3	10	10	12						
4	20	10	8						
5	10	15	16						
6	20	15	20						
7									
8	15,	Основной	уровень п	ервого фа	ктора				
9	10	Основной	уровень в	торого фа	ктора				
0	5	Интервал	Интервал варьирования перво						
11	5	Интервал	варьирова	ания второ	го фактора				
2									
13	Матрица г	плана в код	довом выр	ажении					
4	=(A1-\$A\$8	3)/\$ A\$10							
15	1	-1							
16	-1	0							
17	1	0							
8	-1	1							
9	1	1							

$$\phi_1 = 1, \ \phi_2 = x_1, \ \phi_3 = x_2,$$

 $\phi_4 = x_1 x_2, \ \phi_5 = x_2^2.$

Составим матрицу базисных функций. В пять соседних ячеек строки 22 поместим формулы

```
=1
=A14
=B14
=A14*B14
=B14^2
```

После этого выделим диапазон A22: E22 и переместим маркер автозаполнения на шесть строк ниже.

Нам потребуется матрица **X**^{*T*}, полученная транспонированием матрицы базисных функций. Выделим диапазон G22:L26 начиная с ячейки G22. Затем (при активном выделении) следует поместить в ячейку G22 формулу = TPAHCП(A22:E27)

И Нажать Ctrl+Shift+Enter.

21	Матрица (Базисных с	þункций Х			X^X	г			
22	1	-1	-1	1	1	=TF	РАНСП((A22:E27)		
23	1	1	-1	-1	1					
24	1	-1	0	0	0					
25	1	1	0	0	0					
26	1	-1	1	-1	1					
27	1	1	1	1	1					

Найдем матрицу моментов и ковариационную матрицы. В данном примере ЭС-модель содержит пять слагаемых, поэтому матрицы $\mathbf{X}^T \mathbf{X}$ и $\mathbf{D} = (\mathbf{X}^T \mathbf{X})^{-1}$ имеют размеры 5х5. Можно выделить диапазон A30:E34, при активном выделении ввести в ячейку A30 формулу =МУМНОЖ(G22:L26;A22:E27)

И Нажать Ctrl+Shift+Enter.

21	Матрица базисных функций Х										
22	1	-1	-1	1	1						
23	1	1	-1	-1	1						
24	1	-1	0	0	0						
25	1	1	0	0	0						
26	1	-1	1	-1	1						
27	1	1	1	1	1						
28											
29	Информационная матрица Х^Т*Х										
30	=МУМНОЖ(G22:L26;A22:E27)										
31											
32											
33											
34											

Для нахождения ковариационной матрицы следует выделить диапазон G30:к34, при активном выделении ввести в ячейку G30 формулу = MOEP(A30:E34)

И Нажать Ctrl+Shift+Enter.

29	Информац	ционная ма	атрица Х^Т	*X		Кова	<u>риац</u> ионная ма	трица		
30	6	0	0	0	4	=MO	БР(А30:Е34)	0	0	- 1/2
31	0	6	0	0	0	0	1/6	0	0	0
32	0	0	4	0	0	0	0	1/4	0	0
33	0	0	0	4	0	0	0	0	1/4	0
34	4	0	0	0	4	-	1/2 0	0	0	3/4

Заключительной операцией является нахождение вектора параметров модели. Можно выделить диапазон G2:G6, при активном выделении поместить в ячейку G2 формулу

=MYMHO%(MYMHO%(G30:K34;G22:L26);C1:C6)

И Нажать Ctrl+Shift+Enter.

=	G	Н		J	K	L	
	Вектор ко:	эффициен	тов				
	=МУМНО>	К(МУМНО>	K(G30:K34	(G22:L26);	C1:C6)		
	-2						
	3						
	4						
	5						

Вектор параметров равен

$$\mathbf{B} = (10, -2, 3, 4, 5)^T$$

Искомая модель имеет вид

$$y = 10 - 2x_1 + 3x_2 + 4x_1x_2 + 5x_2^2.$$

Графическое представление предсказанного моделью значения отклика – линии равного отклика на плоскости (x₁, x₂) – представлены на рисунке. К сожалению, MS Excel ограниченно пригоден для выполнения подобных построений; графическое представление результатов следует выполнять другими средствами.

