
Spectroscopic Software

PROGRAMMING

Version 4

I2
43

13

© 2002 BRUKER OPTIK GmbH

The text, figures, and programs have been worked out with the utmost care. However, we cannot accept
either legal responsibility or any liability for any incorrect statements which may remain, nor their con-
sequences. The following publication is protected by copyright. All rights reserved. No part of this pub-
lication may be reproduced in any form by photocopy, microfilm or other procedures or transmitted in
a usable language for machines, in particular data processing systems without our written authorization.
The rights of reproduction through lectures, radio and television are also reserved. The software and
hardware descriptions referred to in this manual are in many cases registered trademarks and as such
are subject to legal requirements.

This manual is the original documentation for the OPUS spectroscopic software.

Table of Contents
Introduction

1 Programming, Controlling and Communication with OPUS-NT . . 1-1
1.1 Methods of Flow Control . 1-1
1.2 Interfaces . 1-1

2 Programs running under OPUS-NT . 2-1
2.1 External Programs . 2-1

2.1.1 The External Program Command . 2-2
2.1.2 The Select File/Program Page . 2-3
2.1.3 The Program Settings Page . 2-5
2.1.4 The DDE Command Page . 2-6
2.1.5 Writing software . 2-7

2.2 Macros . 2-8
2.3 VBScripts . 2-8

2.3.1 Accessing Scripts . 2-8
2.3.2 The Select Files/Script Page . 2-9
2.3.3 Generating a Script . 2-10

2.4 Including Macros and Scripts in the Tool Bar. 2-11
2.5 Auto-starting a Script . 2-12

3 Calling OPUS Functions . 3-1

4 Controlling External Programs . 4-1

Macros

5 OPUS-NT Macro Language . 5-1
5.1 Creating Macros . 5-1
5.2 General Syntax Rules . 5-1
5.3 Macro Keyword REM . 5-2
5.4 The Macro Editor . 5-2

5.4.1 General . 5-2
5.4.2 Special Commands . 5-4
5.4.3 The Variable Dialog Box . 5-6
5.4.4 Inserting OPUS Commands . 5-7
5.4.5 Editing OPUS Command Lines . 5-8

5.5 Debugging Macros . 5-9
5.5.1 Stepping Through a Macro . 5-11
5.5.2 Calling Sub Routines . 5-11
5.5.3 Placing Stop Marks . 5-12
5.5.4 Aborting a Macro . 5-12
5.5.5 Automatic Stop . 5-13
iii

5.5.6 Error Messages . 5-13
5.6 Compiling Macros . 5-13
5.7 Macro Converter . 5-13

5.7.1 Variables . 5-16
5.7.1.1 Variable Conversion . 5-16
5.7.1.2 Combobox Variables . 5-17
5.7.1.3 Selecting Variables . 5-17

5.7.2 Differences in File Handling . 5-17
5.7.3 System Directories . 5-18
5.7.4 Function Parameters and Parameter Assignment 5-18
5.7.5 Time-behavior of Macros . 5-19
5.7.6 Print Functions . 5-19
5.7.7 Calculations with Variables . 5-19
5.7.8 Jump Instructions . 5-19
5.7.9 Start Loop with For Each Option . 5-20
5.7.10 Load Multiple Files . 5-20
5.7.11 User Dialogs . 5-20
5.7.12 Client/Server Calls . 5-20
5.7.13 Conversion Functions . 5-21

5.8 Writing Portable Macros . 5-21

6 How to Write Macros . 6-1
6.1 General Remarks . 6-1

6.1.1 Syntax . 6-1
6.1.2 The Use of Variables . 6-1
6.1.3 Variable Names . 6-2
6.1.4 Variable Types . 6-2
6.1.5 Variable Type Conversion . 6-3

6.2 Measure 1 – A Simple Macro . 6-3
6.3 Measure 2 – A Macro Including Data Manipulation 6-6
6.4 Measure 3 – Repeated Data Acquisition Using a Loop 6-8
6.5 Measure 4 – Interacting with the User . 6-11
6.6 Measure 5 – Variable Loop Counters . 6-13
6.7 Load 1 – Loading and Processing a Spectrum . 6-16
6.8 Load 2 – Loading and Processing Several Spectra 6-18
6.9 Load 3 – Multiple File Processing . 6-20
6.10 Load 4 – Multiple File Processing . 6-26
6.11 Manipulation 1 – Processing of Files Already Loaded 6-29
6.12 Manipulation 2 – Processing of Files Already Loaded 6-30
6.13 Manipulation 2a – Saving Processed Files . 6-31
6.14 Manipulation 3 – Processing of Multiple Files Already Loaded. 6-33
6.15 Manipulation 4 – Multiple File Processing Using Variable Parameters . . 6-34
6.16 Average 1 – Averaging Spectra . 6-36
6.17 Average 2 – Averaging Spectra Including the Standard Deviation 6-39
6.18 Parameter 1 – Reading Out Spectrum Parameters. 6-41
6.19 Parameter 2 – Generating Info Blocks . 6-43
6.20 Parameter 3 – Replacing Info Block Entries . 6-46
6.21 Parameter 4 – Read From a Report . 6-47
iv

6.22 Control 1 – Controlling a Macro Using Buttons 6-50
6.23 Control 1a – Controlling a Macro Using Buttons 6-53
6.24 Control 2 – Controlling a Macro Using If, Else And Elseif 6-54
6.25 Control 3 – Error Handling . 6-60
6.26 Timer 1 – Timer Function With Delay Time . 6-61
6.27 Timer 2 – Timer Function Using a Clock . 6-64
6.28 Timer 3 – Timer Function Using the If Statement 6-65
6.29 Main 1 – Calling Sub Routines with RunMacro 6-67
6.30 Main 2 – Calling Sub Routines with CallMacro 6-68
6.31 Main 3 – Returning Values From a Sub Routine 6-71
6.32 Output 1 – Directing Output to a File . 6-75
6.33 Output 2 – Plotting Spectra . 6-77

External Programs

7 Writing External Programs . 7-1
7.1 A Basic Program with DDE Communication Capability 7-1

7.1.1 Initializing the Connection . 7-1
7.1.2 Processing the Commands . 7-2
7.1.3 Notification and Result . 7-3
7.1.4 Error Handling . 7-3
7.1.5 Program Termination . 7-4

7.2 A C Program Using the Pipe Interface . 7-4
7.2.1 Establishing a Connection . 7-5
7.2.2 Client/Server Commands . 7-5
7.2.3 Data Manipulation . 7-7
7.2.4 Reading Data from the Pipe . 7-8
7.2.5 Changes compared to OPUS-OS/2 . 7-10
7.2.6 Miscellaneous . 7-10

8 Creating Scripts . 8-1
8.1 VisualBasic Script . 8-1

8.1.1 Generating Forms and Buttons . 8-1
8.1.2 Objects and Events . 8-2
8.1.3 OPUS Functions . 8-4
8.1.4 Performing Measurements . 8-4
8.1.5 Accessing Spreadsheets . 8-5
8.1.6 Repeated Calls Using a Timer . 8-6
8.1.7 Accessing Spectral Data . 8-7

8.2 JavaScript . 8-9

Macro Command Reference

9 Macro Command Reference . 9-1
9.1 VARIABLES Section . 9-1
v

9.1.1 Variable Types . 9-2
9.1.2 Variable Declaration for STRING, NUMERIC and BOOL 9-2
9.1.3 Variable Declaration for FILE . 9-3
9.1.4 Variable Declaration for BUTTON . 9-4
9.1.5 Marking a Variable for Update . 9-4
9.1.6 Special Characters . 9-5

9.2 PROGRAM Section . 9-6
9.2.1 General Command Syntax . 9-6
9.2.2 Command Names . 9-6
9.2.3 Command Arguments . 9-6

9.3 PARAMETER Section . 9-7
9.4 Macro Functions Sorted Alphabetically . 9-8
9.5 Functions Sorted by Categories . 9-10
9.6 System Functions . 9-12

9.6.1 GetOpusPath . 9-12
9.6.2 GetUserPath . 9-12
9.6.3 GetMacroPath . 9-13
9.6.4 GetVersion . 9-13
9.6.5 GetArrayCount . 9-13
9.6.6 GetLength . 9-14
9.6.7 FindString . 9-14
9.6.8 CallMacro . 9-15
9.6.9 SaveVars . 9-15

9.7 Flow Control Functions . 9-16
9.7.1 StartLoop . 9-16
9.7.2 EndLoop . 9-17
9.7.3 Goto . 9-17
9.7.4 Label . 9-17
9.7.5 If ... Else ... Endif . 9-18

9.8 User Interface Functions . 9-20
9.8.1 Message . 9-20
9.8.2 StaticMessage . 9-21
9.8.3 UserDialog . 9-21

9.9 Input Functions . 9-22
9.9.1 Enter Expression . 9-23
9.9.2 GetParameter . 9-24
9.9.3 FromReportHeader . 9-24
9.9.4 FromReportMatrix . 9-25
9.9.5 ReadTextFile . 9-25
9.9.6 GetEnumList . 9-25

9.10 Output Functions . 9-26
9.10.1 TextToFile . 9-26
9.10.2 PrintToFile . 9-27

9.11 File Functions . 9-27
9.11.1 LoadFile . 9-28
9.11.2 ScanPath . 9-29
9.11.3 Copy . 9-29
9.11.4 Rename . 9-30
9.11.5 Delete . 9-30
vi

9.12 Time Control Functions . 9-30
9.12.1 GetTime . 9-30
9.12.2 Timer . 9-31

9.13 Display Functions . 9-31
9.13.1 OpenDisplayWindow . 9-32
9.13.2 CloseDisplayWindow . 9-32
9.13.3 DisplaySpectrum . 9-32
9.13.4 UnDisplaySpectrum . 9-33
9.13.5 GetDisplayLimits . 9-33
9.13.6 SetDisplayLimits . 9-33
9.13.7 SetColor . 9-33

OPUS Command Reference

10 OPUS Command Reference . 10-1
10.1 Command Syntax of OPUS Functions . 10-1
10.2 Including OPUS Commands in Macros . 10-1
10.3 Measurement Commands . 10-4
10.4 Reference Section . 10-5
10.5 OPUS Functions Sorted Alphabetically . 10-5
10.6 OPUS Functions Sorted by Type . 10-7
10.7 OPUS Manipulation Functions . 10-8

10.7.1 ABTR . 10-8
10.7.2 Average . 10-9
10.7.3 Baseline . 10-10
10.7.4 BlackBody . 10-10
10.7.5 Convert . 10-10
10.7.6 Cut . 10-11
10.7.7 Deconvolution . 10-11
10.7.8 Derivative . 10-12
10.7.9 Extrapolation . 10-12
10.7.10 FFT . 10-12
10.7.11 FreqCalibration . 10-14
10.7.12 InverseFT . 10-14
10.7.13 KramersKronig . 10-15
10.7.14 MakeCompatible . 10-15
10.7.15 Merge . 10-16
10.7.16 Normalize . 10-16
10.7.17 PostFTZerofill . 10-16
10.7.18 RamanCorrection. 10-17
10.7.19 Smooth. 10-17
10.7.20 StraightLine . 10-18
10.7.21 Subtract . 10-18

10.8 OPUS Evaluation Functions . 10-19
10.8.1 Integrate . 10-19
10.8.2 PeakPick . 10-19
10.8.3 SignalToNoise . 10-20
vii

10.9 OPUS File Functions . 10-21
10.9.1 ChangeDataBlockType . 10-21
10.9.2 CopyDataBlock . 10-21
10.9.3 DeleteDataBlock . 10-21
10.9.4 Restore . 10-21
10.9.5 Save, SaveAs . 10-22
10.9.6 SendFile . 10-23
10.9.7 Unload . 10-23

10.10 OPUS Measurement Functions . 10-23
10.10.1 Measurement Commands . 10-23
10.10.2 SendCommand . 10-24
10.10.3 SaveReference . 10-24
10.10.4 LoadReference . 10-24

10.11 OPUS Library Functions . 10-25
10.11.1 LibrarySearchInfo . 10-25
10.11.2 LibrarySearchPeak . 10-25
10.11.3 LibrarySearchStructure . 10-27
10.11.4 LibrarySearchSpectrum . 10-27
10.11.5 LibraryInitialize . 10-29
10.11.6 LibraryStore . 10-29
10.11.7 LibraryEdit . 10-30
10.11.8 InfoInput . 10-31

10.12 Miscellaneous OPUS Functions . 10-33
10.12.1 ExternalProgram . 10-33
10.12.2 ParameterEditor . 10-34
10.12.3 Plot . 10-35
10.12.4 VBScript . 10-36

11 OPUS Parameter Reference. 11-1

Client/Server Command Reference

12 The C/S-Interpreter and its Commands . 12-1
12.1 Overview of Available Functions . 12-1
12.2 Commands and Command Syntax. 12-1
12.3 Old C/S Commands . 12-2

12.3.1 Overview . 12-2
12.3.2 CLOSE_PIPE . 12-3
12.3.3 COUNT_ENTRIES. 12-3
12.3.4 READ_FROM_ENTRY . 12-4
12.3.5 WRITE_TO_ENTRY . 12-5
12.3.6 READ_FROM_FILE . 12-5
12.3.7 WRITE_TO_FILE . 12-6
12.3.8 READ_FROM_BLOCK . 12-7
12.3.9 WRITE_TO_BLOCK . 12-8
12.3.10 ASCII . 12-9
12.3.11 BINARY . 12-9
viii

12.3.12 DATA_VALUES . 12-9
12.3.13 DATA_POINTS . 12-10
12.3.14 READ_HEADER . 12-10
12.3.15 READ_DATA . 12-12
12.3.16 WRITE_HEADER . 12-13
12.3.17 WRITE_DATA . 12-14
12.3.18 COPY_DATA . 12-16
12.3.19 LOAD_FILE . 12-17
12.3.20 UNLOAD_FILE . 12-17
12.3.21 START_MACRO . 12-18
12.3.22 FILE_PARAMETERS . 12-20
12.3.23 OPUS_PARAMETERS . 12-21
12.3.24 READ_PARAMETER . 12-21
12.3.25 WRITE_PARAMETER . 12-22
12.3.26 RUN_MACRO . 12-22
12.3.27 MACRO_RESULTS . 12-23
12.3.28 KILL_MACRO . 12-24

12.4 Obsolete Commands . 12-25
12.4.1 OVERWRITE . 12-25
12.4.2 PRESERVE . 12-25
12.4.3 TIMEOUT . 12-26

12.5 New Commands . 12-27
12.5.1 BYTE_MODE . 12-27
12.5.2 INT_MODE . 12-27
12.5.3 FLOAT_MODE . 12-28
12.5.4 DOUBLE_MODE . 12-28
12.5.5 HEXSTRING_MODE . 12-28
12.5.6 FLOATCONV_MODE . 12-29
12.5.7 GET_DISPLAY . 12-29
12.5.8 SET_WINDOW . 12-30
12.5.9 NEW_WINDOW . 12-30
12.5.10 CLOSE_WINDOW . 12-31
12.5.11 POSITION_WINDOW . 12-31
12.5.12 GET_LANGUAGE . 12-32
12.5.13 GET_OPUSPATH . 12-32
12.5.14 GET_BASEPATH. 12-33
12.5.15 GET_DATAPATH . 12-33
12.5.16 GET_WORKPATH. 12-33
12.5.17 GET_USERNAME . 12-34
12.5.18 GET_BENCH . 12-34
12.5.19 UPDATE_BENCH . 12-35
12.5.20 COMMAND_SAY . 12-35
12.5.21 REPORT_INFO . 12-36
12.5.22 HEADER_INFO . 12-36
12.5.23 MATRIX_INFO . 12-37
12.5.24 MATRIX_ELEMENT. 12-38
12.5.25 HEADER_ELEMENT . 12-39
12.5.26 COMMAND_MODE . 12-40
12.5.27 EXECUTE_MODE . 12-40
12.5.28 REQUEST_MODE . 12-41
ix

12.5.29 CLOSE_OPUS . 12-41
12.5.30 TAKE_REFERENCE . 12-41
12.5.31 MEASURE_SAMPLE . 12-42
12.5.32 COMMAND_LINE. 12-43
12.5.33 STOP_THREAD . 12-43
12.5.34 ACTIVATE_DIALOG . 12-44
12.5.35 LOAD_EXPERIMENT. 12-44
12.5.36 GET_USERRIGHTS . 12-45
12.5.37 PACKET_AVAILABLE. 12-45
12.5.38 GET_CLIENTAREA . 12-46
12.5.39 ACTIVATE_DISPLAY . 12-46
12.5.40 GET_LIMITS . 12-47
12.5.41 SET_LIMITS . 12-47
12.5.42 DISPLAY_BLOCK . 12-48
12.5.43 UNDISPLAY_BLOCK. 12-49
12.5.44 ENUM_STRINGS. 12-49
12.5.45 GET_VERSION . 12-50
12.5.46 ASK_THREAD . 12-50
12.5.47 FIND_FUNCTION . 12-51
12.5.48 WORKBOOK_MODE . 12-52
12.5.49 GET_SELECTED . 12-52
12.5.50 LIST_BLOCKS. 12-53
12.5.51 SHOW_TOOLBAR . 12-53
12.5.52 HIDE_TOOLBAR. 12-54
12.5.53 QUICK_PRINT. 12-55

Scripts

13 Script Commands . 13-1
13.1 The C/S Interpreter . 13-1
13.2 VBScript Language . 13-1

13.2.1 VBScript Data Types . 13-1
13.2.2 VBScript Variables . 13-2
13.2.3 VBScript Constants . 13-5
13.2.4 VBScript Operators . 13-5
13.2.5 Using Conditional Statements to Control Program Execution . . 13-6
13.2.6 Loops . 13-9

13.2.6.1Using While...Wend . 13-11
13.2.7 VBScript Procedures . 13-12
13.2.8 VBScript Coding Converntions. 13-14
13.2.9 VBScript Functions . 13-18
13.2.10 File and System Handling . 13-21

13.3 JavaScript . 13-23
13.4 Functions/Events of Forms . 13-24
13.5 Microsoft Forms . 13-27

13.5.1 Checkbox . 13-28
13.5.2 Combobox Control . 13-28
13.5.3 CommandButton . 13-28
x

13.5.4 Frame Control . 13-28
13.5.5 Image Control . 13-29
13.5.6 Label Control . 13-29
13.5.7 ListBox Control . 13-29
13.5.8 Multipage Control . 13-29
13.5.9 OptionButton Control . 13-30
13.5.10 ScrollBar Control . 13-30
13.5.11 SpinButton Control . 13-30
13.5.12 TabStrip Control . 13-31
13.5.13 TextBox Control . 13-31
13.5.14 ToggleButton Control . 13-31
13.5.15 Timer Control . 13-32
13.5.16 Debugging Scripts . 13-32
xi

Methods of Flow Control
1 Programming, Controlling

and Communication with
OPUS-NT

Data acquisition and processing under OPUS-NT can be automated using self-
written programs. These programs can either be written in OPUS’ own macro
programming language, or in Microsofts VBScript. OPUS-NT provides an
interface to third party programs, giving you a link to software designed for pur-
poses other than spectral data acquisition and manipulation. In addition, you
can use this interface to access programs you have written yourself.

The first part of this manual covers the interfaces for external programs. The
second part references the OPUS functions, macro commands, client/server and
VBScript commands.

1.1 Methods of Flow Control

OPUS provides several ways to control program routines. These range from the
simple recording of routine commands in a macro to sophisticated evalutaion
algorithms, which need OPUS parameters and specral data. And, for example,
third party software to control accessories.

This is established by the use of:

• Macros

• VBScript

• external programs

1.2 Interfaces

OPUS comprises of several interfaces for data exchange with other software.
Supported are:

• data input and output using pipes.

• an OPUS DDE Server.

• communication with DDE-Servers of other software.

• an OLE interface for VBScripts.
Bruker Optik GmbH OPUS-NT Programming 1–1

Programming, Controlling and Communication with OPUS-NT
1–2 OPUS-NT Programming Bruker Optik GmbH

External Programs
2 Programs running under

OPUS-NT

2.1 External Programs

External programs are employed whenever you encounter tasks that cannot be
handled by OPUS-NT, or if dedicated programs to solve these tasks already
exist.

Basically, there are two categories of external software:

• Programs designed by the user to perform specific calculations or
data manipulations, and which are able to communicate with OPUS.

• Any other third-party program, which can be launched and controlled
by OPUS.

However, the external software must be written to run on the Windows NT plat-
form, because upon the launch of the program, system functions will be called
directly. Therefore, the program must either be a Win32 executable file, a 16
bit Windows, or a DOS program (an OS/2 program without graphical output
will also work), This requires, that the respective subsystem has been installed
on your computer. In addition, batch files can be used. These files can be iden-
tified by their extensions:

1) .exe

2) .com

3) .bat

Currently, the following OPUS commands are supported by the interface:

• Reading and writing spectral data from/to OPUS spectrum files and
3D files, where the frequency range can be selected.

• Loading and unloading OPUS files.

• Running macros and VBScripts, including parameter exchange.

• Access to information of selected files and the possibility to expand
OPUS by new functions.

• Reading and writing OPUS parameters from/to OPUS spectrum files.

• Reading data from report blocks.

• Generating and positioning windows.
Bruker Optik GmbH OPUS-NT Programming 2–1

Programs running under OPUS-NT
2.1.1 The External Program Command

Programs are launched from within OPUS by the External Program command,
located in the File menu.

Upon selecting the command, a dialog box opens. Use this dialog box to spec-
ify the name and location of the external program, and any additional parameter
or OPUS files you would like to transfer to the program. To launch the program
click the Execute button.

Figure 1: File Menu
2–2 OPUS-NT Programming Bruker Optik GmbH

External Programs
2.1.2 The Select File/Program Page

On this page you specify the program you want to start and any additional
parameters. You can either:

• use the Browse button to locate the program and select it by double-
clicking, or

• open the drop-down list to choose a program you ran before, or

• manually type in the programs name.

The external program will be started after clicking the Execute button. If you
don´t specify a path OPUS will first look in the OPUS directory, next in the
active directory (the directory that was used at last), followed by the Windows
system directory (SYSTEM/SYSTEM32) and any directory indicated by the
path environment variable.

In the following, the parameters of the dialog page will be explained in detail:

Communication

Specifies the type of data communication between OPUS and the external soft-
ware:

• Dynamic Data Exchange – OPUS acts as a client for the external pro-
gram, which in turn must function as a server. Choose this communi-
cation type also if no data exchange will take place.

• Named Pipe – is restricted to programs which were especially
designed to function as a client to OPUS. A Named Pipe communi-

Figure 2: External Program Dialog – Select Files/Program
Bruker Optik GmbH OPUS-NT Programming 2–3

Programs running under OPUS-NT
cation ensure fast data transfer between OPUS and the external pro-
gram, in combination with the possibility of controlling OPUS by
commands.

Start Program Checkbox

If this box is not checked, the program will not be started. This is especially
useful, if DDE commands should be repeatedly used with the same server.

External Program – Name

Enter the name (including the path) of the program to be launched. The drop-
down list holds the names of the programs which were started during earlier
sessions. After the installation of OPUS the list is empty. Alternatively, use the
Browse button to open a Load File dialog.

External Program – Parameters

Additional parameters to be used with the external programs can be specified in
this field. A lot of programs accept parameters like the name of a file which
should be processed. These will be forwarded to the external program as com-
mand line arguments. The entries can be accessed by the external program
using the READ_FROM_ENTRY command.

Files for External Program

Add the data blocks of the spectra to be processed by the external program, if
the external program supports this option.
2–4 OPUS-NT Programming Bruker Optik GmbH

External Programs
2.1.3 The Program Settings Page

Here, additional parameters to control the external program can be set.

Window for External Program

Usually, every program runs in its own window. The size and type of this win-
dow can be defined, according to the following options:

• Normal – a window of standard size will be opened.

• Maximized – the program runs in a window of maximum size.

• Minimized – the program runs in a minimized window. The window
is not visible, but can be opened by clicking on its icon on the Win-
dows NT Task bar.

• Hidden – the program starts in the background and must be called/
closed using special commands.

Run as Private VDM (16bit executables only)

16 bit applications run in the Windows NT Virtual Dos Machine. One advan-
tage of the VDM is its stability; if a program running in a VDM becomes insta-
ble, the VDM will shut down without affecting the operating system. Usually,
all 16 bit applications run in the same VDM. By checking this box you can
force the operating system to open a separate VDM for the external program,
resulting in enhanced overall stability at the cost of additional administrative
tasks by the operating system.

Figure 3: External Program – Program Settings Page
Bruker Optik GmbH OPUS-NT Programming 2–5

Programs running under OPUS-NT
Run as OPUS Task

If this box is not marked, all connections to the external program will be termi-
nated after the program starts and both, OPUS and the program, will run inde-
pendently.

Wait for Program to Terminate

OPUS waits until the external program has been terminated. This option is use-
ful while running macros and scripts, which then can make use of a result or
parameter obtained from an external program.

2.1.4 The DDE Command Page

The DDE Command Page comprises all DDE interface settings to call a server
program.

Execute DDE Transaction

This check box specifies if the DDE server should execute a command
sequence. If so, you have to choose which type of DDE transaction should be
performed:

Poke

This option sends binary data to the server via the XTYP_POKE transaction.

Figure 4: External Program – DDE Command Page
2–6 OPUS-NT Programming Bruker Optik GmbH

External Programs
Execute

A server command will be executed via the XTYP_EXECUTE transaction.
The external program does not return any data.

Request

A server command will be executed via the XTYP_REQUEST transaction. The
external program returns the result.

Server Name

Defines the name of the server, which was used by the server to register with the
system.

Topic

Defines the class of the command. The topic depends on the external program
and the command to be executed; consult the documentation of the program
used.

Item

Specifies the command which will be executed. The value depends on the pro-
gram and the performed command; consult the documentation of the program
used.

Data

This list is only of importance, if Poke was chosen as DDE transaction type.
Enter the binary data, which will be forwarded to the server. All data has to be
coded in string format, for example 65 0x0A 0x0D. If the data is a character
string, it is to be enclosed in hyphens: “hallo”. In this case, the respective
ASCII codes including a terminating 0 will be entered in the list. A prefix (i =
int, l = long, d = double, f = float) is used to classify the following data to be of
the given numerical type. z in combination with a figure n is used to add n
zeros.

2.1.5 Writing software

You can write your own client software to communicate with OPUS. These
programs can be used to assign tasks to OPUS and read data from OPUS.
Named Pipes, which are generated on the host computer can be used to handle
the communication between your program and OPUS. Named Pipes can easily
be accessed through several programming languages e.g. the language C. In C,
these pipes are addressed by commands similar to the commands used for files
access, fopen and fclose. In addition, Named Pipes are supported by
many network platforms.
Bruker Optik GmbH OPUS-NT Programming 2–7

Programs running under OPUS-NT
OPUS also provides a DDE server service, that allows the external program to
trigger an OPUS function with a DDE command.

To create your program, you can make use of various developing environments.
The only restriction that applies is that the resulting executable must run on the
Windows NT platform.

2.2 Macros

OPUS offers its own macro system, consisting of an editor, a debugger and a
converter to translate macros written with OPUS-OS/2.

Macros are intended to be used, if a command sequence has to be processed
repeatedly. Combining these commands in a macro saves the user the trouble of
manually calling these commands (and specifying their parameters). Further-
more, frequently used macros can be integrated as command buttons into the
OPUS tool bar.

Macros are text files that can be created using any kind of ASCII text editor.
However, OPUS provides a comfortable Macro Editor for this purpose. In
combination with the OPUS Macro Debugger, macro programming and testing
becomes straight forward.

2.3 VBScripts

OPUS provides an interface to the Microsoft Scripting Engine, which is able
process several scripting languages. As a result, several programming lan-
guages can be used in combination with OPUS. Currently, VBScript is the
most commonly used language; furthermore, Java Script can also be used.
There are no limitations to the design of the user interface, which is constructed
with the help of Microsoft Forms. As usual, a Form is constructed interactively.

Scripts open a way to a nearly unlimited number of applications. They can be
used to guide an OPUS user through the software, without the necessity for him
to become an OPUS expert. Through their ability to communicate with OPUS
directly, scripts can be used to exchange data between OPUS and other soft-
ware, allowing complex calculations or data manipulation. In addition, by
using scripts it is possible to directly access the data stored in OPUS files.

2.3.1 Accessing Scripts

There are two ways to start an existing script:

• Use the Open command in the File menu (see Fig. 1). Use “*.obs”
as default extension. If you load this type of file, the respective user
2–8 OPUS-NT Programming Bruker Optik GmbH

VBScripts
interface will be launched and the script will be processed.

• Use the VBScript command in the File menu; this command allows
to specify parameters to be used when running the script. Further-
more, this VBScript command itself can be included in macros and
scripts.

2.3.2 The Select Files/Script Page

Script

Enter the name (including the path) of the script to be launched. The drop-down
list holds the names of the scripts which were started during an earlier session.
Alternatively, use the Browse button to open a Load File dialog and locate the
script.

Wait for Script to Terminate

OPUS waits for the script to terminate. This option is useful while calling this
function from macros and scripts, which in turn make use of a result or parame-
ter obtained from the launched script.

Hidden

The script will run in the background instead of being displayed.

Figure 5: VBScript Dialog – Select Files/Script Page
Bruker Optik GmbH OPUS-NT Programming 2–9

Programs running under OPUS-NT
Parameters

Additional parameters to be used in combination with the script can be specified
in this field. These will be exchanged in string format. This causes an OpusIn-
form event in the script, with the string as a parameter.

Files for VB Script

Add the data blocks of the spectra to be processed by the script.

2.3.3 Generating a Script

Choose the New button in the File menu and VB Script in the displayed dialog
box to generate a new script. This will automatically open the Form Editor win-
dow.

Use the Form Editor and the Toolbox to include dialog boxes and controls in the
script. Select a tool and draw a rectangle to position a new control. The tool bar
in the lower part of the window controls the position of the control buttons

within the script. Start the script by clicking on the button. Switch to the

text input window by clicking on the button. Refer to chapter 8 to learn
about using the Scripting Editor.

Figure 6: VB Scripting Editor
2–10 OPUS-NT Programming Bruker Optik GmbH

Including Macros and Scripts in the Tool Bar
2.4 Including Macros and Scripts in the
Tool Bar

You can include your scripts and macros in a tool bar to comfortably access the
most frequently used programs. OPUS must recognize the macro/script (and
the correlated bitmap) upon starting. Therefore, for each macro/script you have
to add an entry in the USERMAC.LST file, stored in the OPUS directory.

Path\File@Menunumber@Itemname@Tooltiptext@Statusline

Path\File The path to the macro/script.

Menunumber The number of the menu, in which the entry will appear.

Itemname The name under which the macro/script will be listed in
the menu.

Tooltiptext The text which will be displayed as tooltip for the
macro/script.

Statusline The text which will be displayed in the status line while the
macro/script is running.

Figure 7: VB Scripting Editor – Text Input Window
Bruker Optik GmbH OPUS-NT Programming 2–11

Programs running under OPUS-NT
The numbers of the menus can be taken from the following table:

In order for the macro/script to be represented by an icon on the tool bar, you
have to provide a 16 color bitmap of 16x15 pixels of this icon. This bitmap has
to be stored as <Macro/Scriptname>.bmp in the same path as the corresponding
macro/script.

Example:

C:\OPUS-NT\KALIBRATION.MTX@1@Measure@Standardcalibration
@Macro running

This entry includes the macro CALIBRATION.MTX in the Measure menu. “Stan-
dard calibration” will be displayed as tooltip. The icon bitmap must be stored as
CALIBRATION.BMP in the C:\OPUS-NT\ directory.

2.5 Auto-starting a Script

In some cases it is desired to automatically perform certain tasks upon launch-
ing OPUS. In this way, a specifically configured OPUS user interface could be
automatically presented to the user. To automatically process a script after the
start of OPUS, a parameter has to be included in the Windows NT command
line:

Opus.exe /SCRIPT=start.obs

This command automatically loads and processes the script “start.obs” after
starting OPUS. The same command can be included in a Windows NT shortcut
for OPUS (refer to your Windows NT documentation).

Menu Menu Number

Measure 1

Manipulate 2

Evaluate 3

Display 4

Print 5

Macro 6

Edit 7

Validation 8

Setup 9

File 10
2–12 OPUS-NT Programming Bruker Optik GmbH

3 Calling OPUS Functions

All OPUS functions can also be called as a text command from:

• the command line

• within macros

• DDE requests of an external client program to the OPUS server

• within scripts

Syntax:

<Function> ([File],{Parameter})

Call from the Command Line

A simple command line interpreter is built into OPUS, but not visible in the
default mode. The command line interpreter can be activated with the Custom-
ize Toolbars command form the Setup menu.

For example, if you enter

Baseline (["e:\opus\data\abboe05.0"],{})

at the command line, the file ABBOE05.0 will be baseline corrected. If the file
has not been loaded in OPUS, it will load automatically prior to the baseline
correction.

The file which is to be processed has to be enclosed by hyphens. The empty
braces at the end of the command symbolize, that no parameters have been
specified. In that case, the default values will be used. However, parameters
can be entered in order to make the command more specific. Parameters consist
of a three character code, followed by an equal sign and a value (e.g. BME=1).
Parameters have to be separated by a comma.

A file can be loaded more than once at the same time; therefore, a number is
added after the file name to identify the version of the file. This number is
called clonecount. Furthermore, a data file usually consists of several data
blocks, which can be addressed separately:

Baseline ["e:\opus\data\abboe05.0" 3:AB]

This command processes the absorption data block of the third version (copy)
of the file ABBOE05.0.
Bruker Optik GmbH OPUS-NT Programming 3–1

Calling OPUS Functions
Call to a Macro from a DDE Client

A command can also be included in a macro. The same syntax as used for the
command line entry applies, except that instead of the file name a macro file
variable is to be used.

Call from the OPUS DDE Server

If the OPUS DDE server is addressed by another program, the server executes a
command, which then in turn allows this program to control OPUS. After a
DDE connection has been established between the server (OPUS) and the exter-
nal program, commands can be exchanged as LinkItem (e.g. using
XTYP_EXECUTE). As class name OPUS/System has to be entered in the
Topic field (see chapter 1.1.4). The command syntax is identical to the com-
mand line entry, preceded by COMMAND_LINE if necessary.

Client/Server Communication via Pipes

Once a Named Pipe connection was established between OPUS and the external
program (usually named \\.\PIPE\PROGRAM.EXE), commands can be written
to the pipe. Using the language C, this could be achieved with the fprint
command, the handle of the pipe and the OPUS command syntax.

OPUS Scripting Interface

The OPUS command syntax also applies for scripts. They only differ in the
way the commands are transmitted. A special function (member) of the form
will be called by the script, which transfers the command to OPUS:

Form.OpusCommand("COMMAND_LINE...")
3–2 OPUS-NT Programming Bruker Optik GmbH

4 Controlling External

Programs
You can also make use of an OPUS interface to control third party software.
This allows you for example to control additional laboratory equipment, that
you would like to use in combination with your spectrometer.

Command Line Parameters

Use the External Program Dialog to forward the command line argument
through the Parameter field. The software interprets the parameter similar to a
command line input. Depending on the program, not all its functionalities may
be accessible via the command line options.

Using OPUS as a DDE Client

If a program offers a DDE server interface, OPUS can function as a client to this
server. This is again realized through the External Program command, which
requests DDE commands from the server. It does not matter if the server is
already running, or must be started first.

Every server is registered with the operating system, and assigned a unique
name by which it can be addressed. Enter the commands in the Item field of the
DDE Command page (see chapter 1.1.4), and select the desired transaction (for
example request). Click on the Execute button to start the DDE transaction.

Accessing the OLE Interface with Scripts

Scripts are capable to access e.g. Active X documents directly via the OLE
interface. You can create for example an Excel file with the CreateObject
(“Excel.Sheet”) command. Consult the documentation of the external software
to find out about the supported interfaces.
Bruker Optik GmbH OPUS-NT Programming 4–1

Controlling External Programs
4–2 OPUS-NT Programming Bruker Optik GmbH

Creating Macros
5 OPUS-NT Macro Language

The OPUS macro system uses a special text based macro language. Macros are
stored in form of text files, which are interpreted and executed directly within
OPUS.

5.1 Creating Macros

OPUS Macros can be written in three different ways:

• Using a text editor.

• Using the interactive Macro Editor.

• Translating OPUS-OS/2 macros into the OPUS-NT format.

If you are familiar with the syntax you can easily generate macros using any
type of text editor (e.g. Notepad). Just ensure that you save your macro in plain
text format. Make sure you include all three mandatory keywords: “VARI-
ABLES SECTION”, “PROGRAM SECTION” and “PARAMETER SEC-
TION”. A semicolon has to be used as End of Line character.

5.2 General Syntax Rules

A few syntax rules apply for all elements of the macro language:

• A macro line (command, declaration) must always be terminated by
a semicolon.

• A macro line can be split into several text lines within the text file.

• The three section keywords (VARIABLES SECTION, PROGRAM
SECTION, PARAMETER SECTION) must be present in each
macro, even if a section is empty.

• The section keywords do not need a semicolon.

• Variable names are always enclosed by < > (e.g. <Index>).

• Strings within a macro line must be enclosed by single quotes (’This
is a string’).

• All command lines need brackets after the command name, even if
they do not need command arguments.

• A line beginning with the keyword REM will be ignored.

The most common errors in programming macros are missing section keywords
and semicolons.
Bruker Optik GmbH OPUS-NT Programming 5–1

OPUS-NT Macro Language
5.3 Macro Keyword REM

Any line in the three macro sections can be disabled during a macro run by typ-
ing REM at the very beginning of a line. This either can be used to temporarily
disable lines for testing instead of erasing them, or for adding comment lines
within the macro for better readability.

When converting OPUS-OS/2 macros commands which are currently not avail-
able will automatically be preceded by the REM keyword.

5.4 The Macro Editor

5.4.1 General

OPUS-NT provides an user-friendly macro editor, which allows you to write
and edit your own macros. The macro editor comes with syntax check capabil-
ity; every time an existing macro is loaded, when a macro line or variable line is
edited or when a macro should be stored, a syntax check is automatically per-
formed. In case an error is detected an error message will be displayed and the
changes responsible for the error will be revoked. You cannot exit the editor or
save a macro unless all errors have been corrected.

The editor consists of two windows, one displays the macro code and the sec-
ond the macro variables. Attached to each window is a tool bar; on both tool
bars you find buttons to insert and to remove text lines .

Use the Open Macro button to load an existing macro. The syntax of macro
command lines and variable declarations is checked upon loading a macro. In
case an error is detected an error message will be displayed. You have the
choice to either start the Autocorrect option (see below) or to load the macro
and leave all lines unchanged and correct the errors manually. Please note that
you cannot save a macro or exit from the macro editor unless you have cor-
rected all syntax errors. By clicking on the Autocorrect button all command
lines will be scanned and all errors automatically corrected.

Follow these steps to quickly remove syntax errors from your macros:

1) Open the macro editor and load the macro. If your macro contains syn-
tax errors you will see the following error message “Suppress Error
Messages and load with Auto Correct Option?”.

2) Click on “Yes”. Now the macro will be loaded and all detected syntax
errors will be corrected automatically. The message “Syntax Errors
have been corrected automatically ” will be displayed.

3) Confirming this message opens the “Save File” dialog; store the cor-
rected macro.
5–2 OPUS-NT Programming Bruker Optik GmbH

The Macro Editor
To insert a line, activate a line in the macro code; click on the button and a

blank line appears below the activated line of code. At the end of the new line

another button is displayed. This button opens a dialog to assist you during
the declaration of special commands (see the following chapter). However, you
can also type in the code manually. Edit a line by a double-click, followed by

clicking on the button.

You enter variables in the same manner in the bottom window; instead of the
Special Macro Commands dialog, a box for the declaration of variables will be
displayed after clicking on the button.

In addition, the code window has two buttons to shift selected lines up or

 down the text body, in order to simplify restructuring the program. Vari-

ables displayed in the lower window cannot be repositioned, but are listed chro-
nologically to their creation.

You can search for any string in the macro command and the variables section.
Enter the string you want to search for in the entry field below the two search
buttons. Start the search by either clicking on the Search Command or Search
Variable button. Click the button repeatedly to find the next occurance of the
search string. After searching the macro is completed the search starts again at
the top.

Figure 8: Macro Editor
Bruker Optik GmbH OPUS-NT Programming 5–3

OPUS-NT Macro Language
5.4.2 Special Commands

Open the Special Macro Commands dialog by clicking on . Enter the com-
mand in the Command Name field or choose a command from the drop-down
list. This list contains all special commands.

Depending on the command, additional Parameters will be displayed. In the
case of Functions, that assign values to variables two fields, Variable and Index,
are shown on the left side of the Command Name field.

Some macro commands require parameters which can only be selected from a
predefined set of options. In this case the most common used option will be
shown automatically in the entry field. For StartLoop and EndLoop instructions
the loop index will also be selected automatically.

Drop-down lists provide variables or key words for all fields, depending on the
type of the parameter. Each field must contain a value for the command to
function properly. The syntax is described in chapter 9. Use the Add Variable
button (see the next chapter) to define a new variable.

The commands listed in the following open their own dialog box:

CallMacro
UserDialog
StaticMessage

Figure 9: Special Macro Commands Dialog

Figure 10: Special Macro Commands Dialog – Command Declaration
5–4 OPUS-NT Programming Bruker Optik GmbH

The Macro Editor
The command Enter Expression is an exception in that sense, that instead of the
command name an equal “=” sign will be used.

Figure 11: User Dialog Setup and Static Message Dialog Box

Figure 12: Call a Sub Macro Dialog Box
Bruker Optik GmbH OPUS-NT Programming 5–5

OPUS-NT Macro Language
This dialog for example generates the program code

<File> = ’<Directory>\<FileName>’;

5.4.3 The Variable Dialog Box

This dialog box will open after clicking on . Choose the type of the variable
by checking the respective radio button. Enter a unique name in the Name field,
and if necessary also a start value. If no start value is stated, 0 will be taken in
case of numerical variables and an empty string for all other variables. Check
the Update Automatically box to have the value of the variable automatically
refreshed. These variables are labelled by a preceding asterik “*”.

Figure 13: Special Macro Commands – Enter Expression

Figure 14: New/Edit Variable Dialog
5–6 OPUS-NT Programming Bruker Optik GmbH

The Macro Editor
If you select FILE as variable type you can specify, besides the name, one or
more data blocks in the fields that appear. Choose the desired block type from
the three drop-down list and press the Add button; they will appear in the list in
the lower part of the window.

The first list contains a complete list of spectrum data blocks. The second list
consists of derivative blocks, and the last list comprises the rest of the extended
blocks. Blocks that are marked by a slash “/” are linked to spectral data. Some
blocks can either be linked or not, like for example the Search data block; while
the report of a spectrum search is linked to the spectral data block (AB/Search),
the report of an information search is not.

5.4.4 Inserting OPUS Commands

OPUS commands are inserted by simply selecting the desired OPUS function
from the pull-down menu or the tool bar while you edit a macro. This causes
the program code to be inserted below the selected line or to be appended to the
macro if no line is selected. You can reposition the code within the program
with the up and down buttons. OPUS commands can be edited in the same way
as any other macro command. Double-click on the code line and press the
button. The dialog box of the OPUS command will open and you can alter your
settings.

When you select a command its dialog box will be displayed as usual, allowing
you to set the function parameters. The list of files to be processed is replaced
by a drop-down list comprising all file variables. Instead of a file name you
select a variable. This requires that the variable you want to use must be
defined beforehand.

Figure 15: Inserting OPUS Commands
Bruker Optik GmbH OPUS-NT Programming 5–7

OPUS-NT Macro Language
After clicking the command button to execute the command a dialog appears,
listing all necessary parameters with their names and current values. In the last
column choose a macro variable for any parameter from the list. The parame-
ters will be assigned to these variables during runtime of the macro.

The checkbox at the beginning of each row determines, whether the parameter
will be entered into the program line (box checked) or the parameter section.
Parameters which are assigned variables must be included in the program
line.

Some OPUS functions are able to return results to the macro. For example a
data acquisition generates a file that must be accessed by the macro. In this case
the macro editor automatically generates a new FILE variable named
<$ResultFile, x>, where x will be incremented automatically.

Example

<$ResultFile 1> = MeasureSample (0,{...

If OPUS functions return text instead (e.g. SendCommand), an additional selec-
tion list will be displayed above the parameter list of the parameter dialog.
Choose a (already defined) variable from this list.

Example

<Result> = SendCommand (0,{...

5.4.5 Editing OPUS Command Lines

OPUS command lines are edited similar to macro command lines. First select
the line by double-clicking it. Clicking on the button causes the dialog box
of the function to open; the current parameters will be displayed. After clicking
on the execution button of the function, the dialog box for parameter selection
will appear.

Figure 16: Assigning Parameters
5–8 OPUS-NT Programming Bruker Optik GmbH

Debugging Macros
5.5 Debugging Macros

The term “Debugging” means a step-by-step execution of a macro; otherwise
the program execution continues until a stop mark is reached. This option
greatly facilitates locating and analyzing errors.

You load the macro using the Debug Macro command; after you have opened
the macro by double-clicking on the file name you see a list containing the first
few lines of the macro program. Click on the Variables tab to obtain a list of all
variables used in the macro and their current value.

Also you can search a text string within a macro or on the variable page. Enter
the string you want to search in the entry field left from the Search button. Start
the search by clicking on Search. The line containing the string will be
selected. If you click on Search repeatedly the following occurrence of the
string is found, until the macro has been completely scanned. After that, the
search will begin again at the top of the macro. The line number in which the

Figure 17: Debugging a Macro
Bruker Optik GmbH OPUS-NT Programming 5–9

OPUS-NT Macro Language
string was found will be displayed next to the Search button.

On the Variables page two lines allow separate searches for either the variable
name or a variable value. The search run works like searching a text string in a
macro. Please note that values of array variables can only be searched if the
array variable is expanded by double-clicking on the preceeding plus sign prior
to the search run (see below).

Arrays are marked by a plus sign in the Variables window; the value of an array
is the one chosen for example from a selection of a pop-up menu. Double-click-
ing expands the array, that is every value of the array will be displayed. The
index of each value is displayed in the “Name” column.

Figure 18: Debugging a Macro – Macro Variables
5–10 OPUS-NT Programming Bruker Optik GmbH

Debugging Macros
5.5.1 Stepping Through a Macro

The first line of the program is marked by a little green arrow to indicate the
next line to be executed. This line can be executed by clicking the Single Step
button. The arrow moves to the next command to be executed (not necessarily
the next program line) and stops. As long as a command is being executed you
cannot access the window. If the values of variables were changed by a macro
command line, they will be displayed with their new values.

Variable values can be changed at run time in the debugger. Select the line con-
taining the value to be changed. Enter the new value in the entry field next to
the Change Value button and click on the button. For numeric variables only
numbers are allowed. For BOOL variables either a number (0 or 1) or TRUE
and FALSE are accepted.

5.5.2 Calling Sub Routines

If the debugger encounters a sub routine call (“Call Macro....”) while stepping
through a macro, you have the choice between two options:

If you continue in Single Step mode the sub routine will be processed at once,
i.e. the debugger evaluates the routine without explicitly stepping through it.
The cursor stops at the next line of the main program. You should use this
method only, if you are sure that the sub routine contains no errors.

Figure 19: Macro Variables – Collapsed and Expanded Array

Figure 20: List of Macro Variables with Changed Values

Figure 21: Macro Debugger – Options for Sub Routines
Bruker Optik GmbH OPUS-NT Programming 5–11

OPUS-NT Macro Language
On Step into Submacro an additional debugger window opens and the sub rou-
tine will be executed step-by-step. After the sub routine is completed its win-
dow will be closed automatically, and the execution of the main program
continues. Use this mode if the sub routine is likely to contain errors.

5.5.3 Placing Stop Marks

Double-clicking on a line number in the debugger window will set a stop mark,
indicated by a small icon at the beginning of the line. Remove the mark by dou-
ble–clicking on it. A stop mark causes the debugger to halt at this program line,
if Run to Breakpoint is used for the execution. This is especially helpful while
debugging large macros, in case you are certain that the program code executed
before the marked line is free of errors. Run to Breakpoint takes you directly to
the line you have marked. Be sure that no branch occurs which causes the pro-
gram to bypass the stop mark. In this case, or if no stop mark has been inserted,
the macro will be executed completely without a stop.

5.5.4 Aborting a Macro

The Single Step mode can be aborted with the Abort Macro button. This com-
mand is not active, while the debugger is busy evaluating a command.

Breakpoints which are set during debugging can be stored in the macro text file
with the Store Breakpoints button (see Figure 17). Whenever the macro is
started in a debugger session these breakpoints will be activated automatically.
When sub macros are called in a debug session, the debugger will automatically
stop at the predefined breakpoints in the sub macro.

The breakpoints are stored in a new section starting with the keyword
“BREAKPOINTS” (and followed by the line numbers of the breakpoints)
which is appended to the macro. Please note that each line numbers requires a
separate line and has to be terminated by a semicolon.

Example

BREAKPOINTS
3;

Figure 22: Stop Mark
5–12 OPUS-NT Programming Bruker Optik GmbH

Compiling Macros
12;
38;

This will set breakpoints to lines 3, 12 and 38.

5.5.5 Automatic Stop

If a program line cannot be executed due to a programming error, the debugger
stops running the macro; the cursor indicates the faulty command line.

5.5.6 Error Messages

While a macro runs only fatal error messages are displayed while other errors
have to be handled with “If (MACROERROR, .EQ., TRUE);” constructs.
When a macro is run in debug mode, all error messages will be shown to facili-
tate debugging and help locating critical sections in a macro.

5.6 Compiling Macros

Macros are generally written and stored as text files. During execution the
macro text file is interpreted i.e. the text format is converted (compiled) into a
binary format which can then be executed. The Compile function performs this
step separately and generates a macro file with a binary format which can be
executed directly.

Reasons to use compiled binary macros:

• a larger binary macro starts faster

• a binary macro cannot be modified by an unauthorized user

Please note that binary macros cannot be changed directly. If modifications are
necessary you need to modify the original text based macro and compile it
again. Compiled macros will also not run in the macro debugger.

To prevent permanent changes of macros using the CallMacro or RunMacro
functions you need no longer specify the file extension for the sub-macro. If no
extension is specified the system automatically uses the file type which is
present. If both types are found the system will use the text version.

5.7 Macro Converter

Use the Macro Converter to translate macros written under OPUS-OS/2 into the
OPUS-NT format. The conversion may require some changes as a result of the
different macro syntax.
Bruker Optik GmbH OPUS-NT Programming 5–13

OPUS-NT Macro Language
OS/2 macros all have the file extension “.MAC”, OPUS-NT macros the exten-
sion “.MTX”. The Macro Converter generates a text file with name of the OS/2
macro and the extension “.MTX” as well as a log file with name of the OS/2
macro and the extension “.LOG”.

The Macro Converter was designed as an assistant, who guides you through the
necessary steps. Calling up the Converter first displays some general informa-
tion about the use of the program. On the second page, you specify the name of
the OS/2 macro to be processed, either by typing it or use the Change Macro
function to browse the directory. You can only switch to the next page, if you
entered a valid macro name.

The next page contains the settings for the destination directory, and the name
of the resulting OPUS-NT macro. The destination directory is by default the
same as the one containing the OS/2 macro. The default directory and macro
name can be changed either manually, or by navigating to another directory
using the Change Output File button. Start the conversion by clicking on Fin-
ish.

Figure 23: Select Macro for Conversion
5–14 OPUS-NT Programming Bruker Optik GmbH

Macro Converter
Log Files

During the conversion of an OS/2 macro a log file will be generated containing

• indications which part of the macro are to be altered manually.

• indications about added code.

• indications about removed code.

• warnings for sub routine calls.

You should check the log file before you attempt to run the converted macro.

System Variables

If the OS/2 macro contains system variables (e.g. directories), code will be
added during the macro conversion, that ensures the correct initialization of
these variables. Information about which lines have been changed are available
in the log file.

Example

STRING <$OPUS-Path>; (system variable of the main OPUS directory)

This variable will be initialized by:

<$OPUS-Path> = GetOpusPath();

Example

STRING <$Data File Path>(system variable of the OPUS data directory)

Figure 24: Define New Macro Name
Bruker Optik GmbH OPUS-NT Programming 5–15

OPUS-NT Macro Language
The variable will be initialized by:

<$Data File Path> = GetOpusPath();
<$Data File Path> = ’<$Data File Path>\DATA’;

Functions Not Implemented in OPUS-NT

Functions that are currently not implemented in OPUS-NT will be “commented
out” by adding a REM command before the function. Information about which
lines have been changed are available in the log file.

Measurement Commands

Only those parameters will be added in the command line of the Macro Editor,
which were assigned variables. All other parameters are included in the
PARAMETER SECTION. If the parameters XPP (experiment path) and EXP
(experiment name) are not assigned, a warning will be included in the log file.

Calling Sub Routines

Sub routine calls always include a fixed path statement. A warning is entered in
the log file.

Obsolete Parameters

Parameters that are obsolete in OPUS-NT will be handled like commands that
are not implemented i.e. a REM command will precede the parameter and ren-
der it inactive.

5.7.1 Variables

The types of variables and their handling in OPUS-NT differ from their use in
OS/2.

5.7.1.1 Variable Conversion

The following table indicates how variables are mapped.

OPUS-OS/2 OPUS-NT

NUMERIC NUMERIC

TEXT FOR EDIT STRING

TEXT FOR OUTPUT STRING

CHECKBOX BOOL

COMBOBOX STRING (Array)

BUTTON BUTTON

FILE FILE

LABEL no variable
5–16 OPUS-NT Programming Bruker Optik GmbH

Macro Converter
5.7.1.2 Combobox Variables

COMBOBOX variables common in OPUS-OS/2 will automatically be con-
verted to STRING variables in OPUS-NT. The values assigned to the COM-
BOBOX variable will be transformed to an array. Depending on the definition
of the COMBOBOX variable, the STRING will be initialized in the PRO-
GRAM section of the OPUS-NT macro as follows:

COMBOBOX with user-defined text:

<Combo>[0] = ’abc’;
<Combo>[1] = ’xyz’;
.....

COMBOBOX containing data of a text file:

<Combo> = ReadTextFile (D:\OPUS\PRINTER.TXT);

COMBOBOX containing the value of an Enum parameter:

<Combo> = GetEnumList (DXU);

5.7.1.3 Selecting Variables

Variables can be marked by an preceding “*” to cause the variable value to be
refreshed, as it was practise in OPUS-OS/2. The new variable values will be
entered directly in the VARIABLES section of the text file.

Example:

*STRING <Text> = ’Old Text’;
.....
<Text> = ’New Text’;

After the macro has been started once, the declaration line will change to:

*STRING <Text> = ’New Text’;

5.7.2 Differences in File Handling

The handling of spectrum files in OPUS-NT while executing OPUS functions,
differs significantly from its OS/2 counterpart. In OPUS-NT the Overwrite files
and Create new files options for functions from the Manipulation menu no
longer exist. Instead of the original data file, an internal copy of the file is gen-
erated and used for data manipulation. The same procedure is applied by func-
tions of the Evaluation menu (e.g. peak table generation, integration). The
result is then appended to the copy of the data file in form of a new data block.
These modifications are indicated by a red rectangle next to the file name in the
OPUS Browser, while a blue rectangle symbolizes an unmodified data file.

The result of a manipulation can be stored by saving the file. Therefore, such an
OPUS command will be translated in different ways, depending on the options
Bruker Optik GmbH OPUS-NT Programming 5–17

OPUS-NT Macro Language
chosen. The following examples illustrate this using the Baseline Correction
command.

Example – Overwrite Files

VARIABLES SECTION
FILE <File> = AB;

PROGRAM SECTION
Baseline([<File>:AB] , {BME=1, BCO=0, BPO=64});

Note that the modified file is not saved by the macro. If you want to save the
result, you need to include the Save command or save the file manually.

Example – Create new files

VARIABLES SECTION
FILE <F1> = AB;
FILE <@result401>;

PROGRAM SECTION
Baseline([<F1>:AB] , {BME=1, BCO=0, BPO=64});
SaveAs([<F1>:AB], {OEX=’1’, COF=2, SAN=WORK.301,
DAP=E:\opus\WORK});
Restore ([<F1>:AB],{});
<@result401> = LoadFile (E:\opus\WORK\WORK.301, WARNING | ABORT);

If the Create new files option was chosen, the converter expands the OPUS-OS/
2 command automatically to guaranty compatibility.

line 1: Baseline correction of the original file.

line 2: The result of the correction is saved as a work file.

line 3: The original file is restored.

line 4: The work file is loaded for further access by the macro.
The work file is stored in the directory indicated in the macro.

5.7.3 System Directories

The system path variables of OPUS-OS/2 are no longer supported. These vari-
ables will be initialized by the appropriate command lines.

5.7.4 Function Parameters and Parameter Assignment

The command lines of a converted macro contain all necessary parameters of
OPUS functions (except the measurement functions) in a parameter list. New
parameters which did not exist in OPUS-OS/2 will be taken from the active
standard parameter set during conversion.
5–18 OPUS-NT Programming Bruker Optik GmbH

Macro Converter
Variables for parameter values that were used in OPUS-OS/2 in the form of an
assignment, are now included directly in the parameter list of the command
(e.g. ..., DAP = <data path>, ...). They will be replaced by their current value
prior to the execution of the command.

5.7.5 Time-behavior of Macros

OPUS-OS/2 macros are executed asynchronous, i.e. commands are sent to the
OPUS task manager, who then decides when to execute the commands. Only a
few functions (e.g. dialog boxes, wait function) were able to pause a macro
until all commands forwarded to the task manager were processed. In some
cases a necessary synchronization of the macro had to be achieved by including
wait functions with the wait time set to 0.

OPUS-NT macros are executed synchronous, i.e. the next command will only
be executed after the termination of the currently processed command. This
makes the use of wait functions as described above obsolete. These commands
are removed upon macro conversion.

5.7.6 Print Functions

Currently, the Print function has not been implemented. OPUS-OS/2 print
commands will be converted to PrintToFile function. Make sure, that the out-
put directory and file name was set properly.

5.7.7 Calculations with Variables

So far, calculations that contained only variables (and no spectral data) had to
be performed with the spectrum calculator. OPUS-NT supports the direct use
of mathematical expressions. For example

 <Number> = <Number> + 1;

is a valid statement in an OPUS-NT macro. This change in syntax considered
by the macro conversion routine.

5.7.8 Jump Instructions

OPUS-OS/2 jump instructions are replaced by “Goto (Label)” statements. Con-
ditional Jumps are expanded to three lines:

OS/2 Macro:Jump to Label if Expression;
NT Macro:If (Expression);

Goto Label;
Endif;

Please note, that jump statements from OPUS-OS/2 macros can be simplified
by using the new If ... Else ... Endif structure. However, this is not done auto-
matically; in case of macros containing several conditional jumps we recom-
Bruker Optik GmbH OPUS-NT Programming 5–19

OPUS-NT Macro Language
mend to manually replace the If ... Endif structures by If ... Else ... Endif
structures.

5.7.9 Start Loop with For Each Option

The “Start Loop” instruction in combination with the option “For each File” is
now identical to all other “StartLoop” instruction. Instead of the counter or a
NUMERIC variable, just state the FILE variable as a counter.

Example:

FILE <File> = AB;
.....
StartLoop ([<File>], 0);loop count = number of files selected

5.7.10 Load Multiple Files

The “Load” function with the “Load multiple” option is replaced by the general
“LoadFile” macro function, followed by a “StartLoop” instruction, with the
FILE variable specified for the loop count.

Example:

<File> = LoadFile (’D:\OPUS\DATA*.0’, WARNING | ABORT);
StartLoop([<File>], 0);
.....
EndLoop(0);

5.7.11 User Dialogs

In OPUS-OS/2 macros, the appearance of lines in a user-defined dialog box was
determined by the variable type. Now, the appearance of a dialog box line is
almost independent of the variable type. It is controlled by keywords added to
the “UserDialog” command.

Examples:

STRING <Text>;

The variable <Text> can be used for an “Edit” control as well as for comment
lines or a combo box.

EDIT:<Text> shows an “Edit” control.

TEXT:<Text> shows a comment line.

COMBOBOX:<Text>shows a Combobox.

5.7.12 Client/Server Calls

The Client/Server function of OPUS-OS/2 is also implemented in OPUS-NT.
5–20 OPUS-NT Programming Bruker Optik GmbH

Writing Portable Macros
Concerning the operating system, the OPUS-NT function External Program
differs slightly from the OPUS-OS/2 Client/Server function. If the external pro-
gram runs in the Windows NT environment, it can be started in the same way as
in OPUS-OS/2.

Not supported are OS/2 programs with a graphical user interface and Rexx
scipts unique for OS/2. Simple DOS based software is supported by OPUS-NT.

For Named Pipes there apply certain restriction in Windows NT. While in
OPUS-OS/2 “\PIPE\OPUS\PROGRAM.EXE” was used as default name, Win-
dows NT expects a pipe name of the form “\\.\PIPE\PROGRAM.EXE”. Self-
written software that is supposed to exchange data with OPUS-NT in that man-
ner has to be adjusted if you want to use it in Windows NT.

In case the macro should wait until the external program is terminated the Wait
for program to terminate box has to be checked.

The function External Program supplies the return code of the external software
or the result of a DDE command as a parameter RS1. The return code is saved
as a STRING variable.

5.7.13 Conversion Functions

Conversion functions (like JCAMP, data point table) no longer exist in OPUS-
NT. Non-OPUS files are converted automatically upon loading the file, if
OPUS recognizes the file format. The converted file will then be saved in a dif-
ferent format, if the appropriate switches are set when using the SaveFile com-
mand. When converting OPUS-OS/2 macros these changes have to be done
manually.

5.8 Writing Portable Macros

A portable macro allows to copy and run a macro written on a specific system
on any other system. This will be straightforward if both systems have an iden-
tical directory structure which is expected by the macro.

In general, there are several ways to write such macros:

1) All drive and path specifications are stored in variables, which then can
be set via a user dialog. If these variables are marked for update, they
must only be set during the initial run of the macro. If only a few paths
are included in the macro, this may be acceptable, but with an increasing
number of paths involved it can become tedious work.

2) A much better and preferable solution is to use a variable home directory
with a fixed subdirectory structure. Not only the single variable, which
has to be set, but also the transparency of this macro to the user is guar-
Bruker Optik GmbH OPUS-NT Programming 5–21

OPUS-NT Macro Language
anteed, because results are located in the same subdirectories on all sys-
tems.

3) The best solution uses either the OPUS path or a User path as home
directory, with a fixed sub directory structure. In this case, the first com-
mand line in a macro must be <Path> = GetOpusPath (); or <Path> =
GetUserPath (); which sets the variable to the current path. There is no
need to set the path manually.

During the installation of OPUS-NT, some sub directories are already created.
These directories are accessible by all users. If access to some of the sub direc-
tories should be restricted, it is still recommended to maintain the OPUS sub
directory structure.

OPUS the main path for the OPUS program and all files necessary to
run OPUS.

DATA sample data.
MEAS measured spectra .
XPM experiment files.
METHODS method files for integration, QUANT, IDENT etc.
MACRO macros.
SEARCH intermediate search reports and method files.
PRINTS output from printing into a file.
SCRIPTS plot layout scripts.
5–22 OPUS-NT Programming Bruker Optik GmbH

General Remarks
6 How to Write Macros

In the following you will find various examples of macros used in every-day
laboratory work. All of these examples are written with the OPUS-NT Macro
Editor. To help you understand how the Macro Editor works, we will explain
every step in detail for the first few macros. If you are not familiar with the Edi-
tor, we recommend that you work through these macros step by step as they are
listed here. After finishing this chapter you should be able to design complex
macros by yourself. All of the examples are also available as files on the
OPUS-NT CD.

The following chapters are divided into several sections:

• Task: the purpose of the macro

• Macro functions: explanation of the macro commands used in the
macro

• OPUS functions: explanation of the OPUS commands used in the
macro

• Generating the macro: the generation of the macro code is
explained step by step

• Listing: a listing of the macro code

• Running the macro: the specific features of the macro are empha-
sized

Before you start create a directory where you will save your macros. Keep in
mind that sometimes macros build on macros written earlier in this chapter.

6.1 General Remarks

6.1.1 Syntax

A detailed description of the macro syntax is given in chapter 9. Since we are
exclusively using the Macro Editor, all code will automatically be generated
according to the syntactical rules. However, if you like to try the direct com-
mand entry using a text editor, you should read the corresponding chapter first.

6.1.2 The Use of Variables

A macro has to fulfill various tasks, like data handling and data processing, or
making decisions depending on the outcome of an OPUS report. These tasks
can only be performed effectively, if the macro operates with variables instead
of constants like file names, dates etc. Therefore, the OPUS macro systems
offers several types of variables.
Bruker Optik GmbH OPUS-NT Programming 6–1

How to Write Macros
If a numerical value should be changed during run time of the macro, a variable
of the type NUMERIC has to be employed. For file names on the other hand,
which can be supplied by the user during run time, a variable of type TEXT is to
be used.

6.1.3 Variable Names

A variable is identified by its unique name. The name will be displayed in dia-
log boxes, and should therefore express the purpose of the variable. For exam-
ple, the use of the name “x start frequency” provides more information that just
the name “x”.

6.1.4 Variable Types

Several types of variables are available in the OPUS-NT macro language. They
are summarized in the following; details about the syntax are given in chapter 9

Text Variables

Text variables are used to save text, like file names or results.

Values can either be entered through dialog boxes, using statements or read
from parameters or reports.

Numerical Variables

Numerical variables are used to save numbers.

Values can either be entered through dialog boxes, using statements or read
from parameters or reports.

Boolean Variables

Boolean variables are used to save the values TRUE or FALSE.

Values can either be entered through dialog boxes, using statements or read
from parameters or reports.

File Variables

File variables are used to save spectra.

Spectra that have already been loaded into the OPUS Browser are assigned to
the variable using a dialog box. Spectra that were generated by a macro are
assigned via statements.
6–2 OPUS-NT Programming Bruker Optik GmbH

Measure 1 – A Simple Macro
Command Buttons

Command buttons are used to control the flow of a macro.

Command buttons cannot be changed during run time, and therefore are not
variables in the true sense. However, they are declared in the variable section,
and are always linked to a Goto instruction condition.

Except command buttons all variables can also be used as arrays, i.e. they can
hold more than one value. The different values are addressed using index num-
bers.

6.1.5 Variable Type Conversion

Text and numerical variables (and boolean variables under certain conditions)
can be converted into each other. Detail are given in the Macro Reference sec-
tion.

6.2 Measure 1 – A Simple Macro

Task

Acquire a spectrum using a macro.

Macro Functions

This example uses no special macro functions.

OPUS Functions

Measurement

The measurement command has a special status compared to normal OPUS
functions; data acquisition requires a multitude of parameters, some of which
are linked to each other. Before you use the measurement command in a macro,
you need to define an experiment file, which you will use in combination with
the macro. For the use with this example macro, you must generate an experi-
ment file “DEFAULT.XPM”, which we save in the directory
C:\OPUS_NT\XPM. The type of data acquisition should be set to absorption
spectrum.

Generating the Macro

1) Create an experiment file in case you haven’t done so already.

2) From the Macro pull-down menu, open the Macro Editor. The Editor
opens with two empty windows, one for program code and the other to
Bruker Optik GmbH OPUS-NT Programming 6–3

How to Write Macros
display variables. The functionality of the Macro Editor was explained
in chapter 5.4.

3) From the OPUS Measure pull-down menu, select the Measurement
command; this will open the Measurement dialog box.

4) If the experiment file you created is not listed, you have to load it by
clicking the Load button on the first page of the dialog.

5) Now click on Collect Sample. A dialog with all parameters of the Mea-
surement command is displayed.

The first column list the Parameter abbreviations that are used by OPUS.
In addition, a check box controls, whether the parameter will be entered
in the command line or the parameter section. While for all other OPUS
commands these check boxes are selected by default, this is not the case
for the Measurement command. Only “Experiment” and “Experiment
Path” are checked.

In the second column, the parameter name is displayed followed by the
current value of the parameter listed in the third column. The values for
“Experiment” and “Experiment Path” are the ones you entered in the
Measurement dialog box.

The last column is reserved for macro variables. In our case all table
cells in this column are empty.

6) Click on OK. The following line will appear:
<$ResultFile 1> = MeasureSample (0, {EXP=’it.xpm’, XPP=’C:\OPUS_NT\XPM’});

� � � � � � �

�� 	
��
����������� �
������������������������������� �!�����"�����#��$����
�"����%� &#��#� ��'��
�!�
� �#�� ��(����"�
'������)� � *#�
� ��������� �''���

��
�� �!� �#�� ��������� ��
�%� �� ��#���&��#� �#�� !���� �!"� �#��
'������� "���
����+��
�
'���,��"��!��#���-'�����!��,���)

�� *#���(����
� !��!"�����
��#����#��,�!����!������!
���,��������������%�&#��#
&��������

� !�"�����#����������)

�� *#��!�����,��#������������	������!"��
�$��
���.��'��)��/���,�!"�����
�
�,�����012.������!"�!���
��!��#��012.�3����!"���,���!���
�����!)

Figure 25: Assigning Macro Variables
6–4 OPUS-NT Programming Bruker Optik GmbH

Measure 1 – A Simple Macro
�� ��������012.������!"
��#��,������
��,����&
��#��'���!�#�
�
)�4����
��!�

'�������,�����
�'����

�"�"���! ��#�����
�����!�%��#���������
�5)��6���
�#�����,������
���
���!"������,���012.�,�!����!
)

�� .�'�����"�������������!"��!���
�"��!������
��
��#��'�����������
���,��#�
,�!����!)� � *#�
� ��
�� �
������ ��!
�
�
� �,�
������� '��������
�
�'�����"� ��
�����
)���,�!��'��������
������
�"��#�������
�&���������'��)

�� 7�'���������"���������!���!
�
�
��,��#�������������!��,��#��'��������%��!
�(����
� !� �!"� �#�� '��������� �����)� � �!� ��
�� �#�� ������ ���� �#�������

8��-�9%��#�����
�����#�'#�!���")

�� 7����
������+��� ,����&�"���� ��
�������!� �!"�����
� �#���!"��,� �#�� ���:
��!"���!�)

7) The newly generated variable will be declared in the variable list:

FILE <$ResultFile 1> = AB;
� � � � �

�� *#�������������'���
�����)

�� *#��!�����,� �#�������������&��
�#�
��������!���
�"�����#��
��������

�!"� ��������#�! �
� !
)��;�������
%��#��������������������� �!�����"%����
'����"�"������<������
� !����"�
��! ��
#��#���,�����
��:"�,�!�"���������
)

�� *#���(����
� !��
���!"�������!��#����
���,���������������
)

�� *#���(����
� !� �
� ,����&�"���� �#�� ��
���,�"��������+
��,� �#��
������"� ,���
8�!����!��#����
���,��������������
9)���!������-��'��%��#��,������!
�
�
��!��
�,��!��
'�������"��������+%��#����
����!���
'�������74)���,���,������!
�
�

�,�
�������"��������+
%��#�
������
�'�����"���������
)

�� *#���!"��,��#����!���
��!"�����"������
�������!)

8) Now save the macro using the Store Macro button. In the Save File dia-
log, navigate to the directory you generated before and enter “Measure
1” as file name. Click on Save.

9) Exit the Macro Editor by clicking on Exit.

10) You can display the macro using any kind of text editor (e.g. Notepad).

Listing (MEASURE 1.MTX)

VARIABLES SECTION
FILE <$ResultFile 1> = AB;

PROGRAM SECTION
<$ResultFile 1> = MeasureSample (0, {EXP=’it.xpm’,
 XPP=’C:\OPUS_NT\XPM’});
PARAMETER SECTION

Note that the parameter section contains no entry; this also is a specific feature
of the Measurement function.

Running the Macro

• Before you run the macro, first collect a background spectrum using
the experiment file you created to be used with the macro.
Bruker Optik GmbH OPUS-NT Programming 6–5

How to Write Macros
• Run the macro with the Run Macro command from the Macro pull-
down menu.

6.3 Measure 2 – A Macro Including Data
Manipulation

Task

The macro should acquire a spectrum and perform a baseline correction. A
peak table should be generated from the result spectrum.

We will built on the macro “Measure 1”, which we wrote in chapter 6.2.

Macro Functions

This example uses no special macro functions.

OPUS Functions

Measurement, Baseline Correction, Peak Picking

Contrary to the Measurement command, the OPUS functions responsible for the
data processing need far less parameters. We recommend to always include all
parameters, as shown in our example, into the command line.

Generating the Macro

1) From the Macro pull-down menu, open the Macro Editor. Load
“Measure 1” by clicking on Open Macro. Path and name are shown in
the line below the buttons.

2) Appending code to an existing macro is simple; just apply the OPUS
function you would like to include. Select Baseline Correction from the
Manipulation pull-down menu.

3) Instead of the file selection box on the first page of the dialog box, a list
appears. Click on the triangle button to open the drop-down list, and
select [<$ResultFile 1>:AB] from the list. The list contains all
variables declared in a macro, in this example only one, instead of file
names. Parameters are selected as usual on the second page of the dia-
log. Select Rubber Band correction.

4) Now click on Correct. The dialog box containing the functions’ param-
eters will be displayed. By default, all parameter check boxes have been
selected.

5) After clicking OK, the function will be appended to the existing macro
code in the command window:
Baseline ([<$ResultFile>:AB], {BME=2, BCO=0,
BPO=64});
6–6 OPUS-NT Programming Bruker Optik GmbH

Measure 2 – A Macro Including Data Manipulation
6) From the Evaluation pull-down menu, choose Peak Picking. Similar to
step 3 select the FILE variable from the list that is displayed on the first
page. On the remaining pages define the parameters as usual, and click
on Peak Picking.

7) Again, the functions’ parameter box will open. You don’t need to make
any changes, just click on OK to close the box. As a result, the follow-
ing line will be appended to the macro:
PeakPick ([<$ResultFile 1>:AB], {NSP=9, PSM=1,
WHR=0, LXP=400.000000, FXP=4000.000000, QP8=’NO’,
QP9=0.200000, PTR=20.000000, QP4=’NO’, QP7=
0.800000, QP6=’NO’, QP5=80.000000, PPM=1, QP0=’NO’,
QP3=4});

The result of the Peak Picking function is stored in an extra data block
(peak report). This block is automatically added to the FILE variable:
FILE <$ResultFile 1> = AB, AB/Peak;

8) Save the macro by clicking on Store Macro. Contrary to the first exam-
ple, the macro name has already been entered in the File Name field,
because we edited an existing macro. Change the file name to
“Measure 2” and click on Save. Exit the Macro Editor.

Listing (MEASURE 2.MTX)

VARIABLES SECTION
FILE <$ResultFile 1> = AB, AB/Peak;

PROGRAM SECTION
<$ResultFile 1> = MeasureSample (0,{EXP=’Default.xpm’,
XPP=’C:\OPUS_NT\XPM’});
Baseline ([<$ResultFile 1>:AB], {BME=2, BCO=0,

Figure 26: Selecting the FILE Variable
Bruker Optik GmbH OPUS-NT Programming 6–7

How to Write Macros
BPO=64});
PeakPick ([<$ResultFile 1>:AB], {NSP=9, PSM=1, WHR=0,
LXP=400.000000, FXP=4000.000000, QP8=’NO’,
QP9=0.200000, PTR=20.000000, QP4=’NO’, QP7=0.800000,
QP6=’NO’, QP5=80.000000, PPM=1, QP0=’NO’, QP3=4});

PARAMETER SECTION

Running the Macro

Upon running the macro, a spectrum will be acquired and post-acquisition data
processing is performed. The result is a baseline corrected spectrum with a
peak table attached.

6.4 Measure 3 – Repeated Data Acquisition
Using a Loop

Task

The macro “Measure 2” should be expanded to perform three concurrent sam-
ple measurements. In addition, a background spectrum should be measured
prior to the data acquisition.

Macro Functions

StartLoop, EndLoop

If a sequence of functions is to be repeated several times, the problem could be
tackled by repeatedly including the code responsible for the function. However,
there is a more elegant solution. The StartLoop and EndLoop commands define
a loop with a counter (Loop Count), that repeats the code enclosed by these
commands as often as indicated by the counter.

OPUS Functions

Measurement, Baseline Correction, Peak Picking

Only a background spectrum acquisition is added. The same conditions as for
the sample measurement apply.

Generating the Macro

1) From the Macro pull-down menu, open the Macro Editor. Load
“Measure 2” by clicking on Open Macro.

2) Select the first line with a single left click of the mouse. From the OPUS
Measure pull-down menu, select the Measurement command. If neces-
sary, load your experiment file and click on Collect Background. Exit
6–8 OPUS-NT Programming Bruker Optik GmbH

Measure 3 – Repeated Data Acquisition Using a Loop
the dialog box that appears next without changing any of the parameters
by clicking on OK. The following code will be appended to the macro:
MeasureReference (0, {EXP=’Default.xpm’,
XPP=’C:\OPUS_NT\XPM’});

3) Select the line as usual (one left-click with the mouse). Now move the

line to the beginning of the macro by clicking on the button. Alter-
natively, double-click on the command line, and drag it to the top of the
list while holding the left mouse button down.

4) Next, we will include a command which is not part of the OPUS pull-

down menu. Clicking on inserts a blank line in the command win-
dow just below the first line

5) Press on the button to open the Special Macro Commands dialog
box.

6) From the drop-down list choose the StartLoop command. Two addi-
tional parameter fields are displayed.

7) As Loop Count enter “3” and “0” in the Loop Index field. Both fields are
empty because no matching variables have been declared so far. Click
on OK.
StartLoop (3,0); is inserted.

Figure 27: Manually Inserting a Command

Figure 28: Special Macro Commands Dialog
Bruker Optik GmbH OPUS-NT Programming 6–9

How to Write Macros
8) Create another blank line in the command window. Call up the Special
Macro Commands dialog and choose the EndLoop command. This
command requires only the Loop Index as a parameter. The Loop Index
links the EndLoop command to the correct StartLoop command; there-
fore, enter “0”. Especially when several loops are used make sure the
correct StartLoop and EndLoop commands are linked.

9) Save the macro as “Measure 3” and exit the Macro Editor.

Listing (MEASURE 3.MTX)

VARIABLES SECTION
FILE <$ResultFile 1> = AB, AB/Peak;

PROGRAM SECTION
MeasureReference (0, {EXP=’Default.xpm’,
XPP=’C:\OPUS_NT\XPM’});
StartLoop (3, 0);
<$ResultFile 1> = MeasureSample (0,
{EXP=’Default.xpm’,
 XPP=’C:\OPUS_NT\XPM’});
Baseline ([<$ResultFile 1>:AB], {BME=2, BCO=0,
BPO=64});
PeakPick ([<$ResultFile 1>:AB], {NSP=9, PSM=1, WHR=0,
LXP=400.000000, FXP=4000.000000, QP8=’NO’,
QP9=0.200000, PTR=20.000000, QP4=’NO’, QP7=0.800000,
QP6=’NO’, QP5=80.000000, PPM=1, QP0=’NO’, QP3=4});
EndLoop (0);

PARAMETER SECTION

Running the Macro

Upon running the macro, a background spectrum will be acquired and subse-
quently three sample measurements. However, there is no pause between the
sample measurements to change or manipulate the sample. This will be part of
the next example.

Figure 29: Defining StartLoop Parameters
6–10 OPUS-NT Programming Bruker Optik GmbH

Measure 4 – Interacting with the User
6.5 Measure 4 – Interacting with the User

Task

Modify “Measure 3” to pause between the repeated data acquisitions. Prompt
the user to insert a new sample before the next measurement.

Macro Functions

StartLoop, EndLoop, Message

The Message function displays a message in a dialog box either for a defined
time or until the user closes the dialog box.

Note: the option ON_PRINTER is not available in OPUS-NT 2.0.

OPUS Functions

Measurement, Baseline Correction, Peak Picking

This example introduces no new OPUS functions.

Generating the Macro

1) Open the Macro Editor and load “Measure 3”.

2) Insert a blank line in the command window just below the “StartLoop”
instruction, and open the Special Macro Commands dialog.

3) From the list, choose the Message command; quick-select by typing the
first letter “M” of the command name after opening the drop-down list.

4) Three parameters are required for the Message function. Enter “Please
insert sample.” into the text field. Don’t forget to enclose the text in sin-
gle quotes.

5) “Option” – the second parameter – is a so called keyword. Open the list
and select “ON_SCREEN”, which causes the message to be displayed
on the computer screen.

6) “Time” specifies how long (in seconds) the message will be displayed.
Also, the HH:MM:SS format (hours, minutes, seconds) is accepted. If
you would like the user to confirm the message, choose NO_TIMEOUT
as keyword. The message will be displayed, until the user clicks the OK
button.
Bruker Optik GmbH OPUS-NT Programming 6–11

How to Write Macros
7) After defining all parameters, close the dialog by clicking OK.

8) Save the macro as “Measure 4” and exit the Macro Editor. If you click
Exit without saving the file, you will be asked to save your work before
closing the Macro Editor.

Listing (MEASURE 4.MTX)

VARIABLES SECTION
FILE <$ResultFile 1> = AB, AB/Peak;

PROGRAM SECTION
MeasureReference (0, {EXP=’Default.xpm’,
XPP=’C:\OPUS_NT\XPM’});
StartLoop (3, 0);
Message (’Please insert sample.’, ON_SCREEN,
NO_TIMEOUT);
<$ResultFile 1> = MeasureSample (0,
{EXP=’Default.xpm’,
XPP=’C:\OPUS_NT\XPM’});
Baseline ([<$ResultFile 1>:AB], {BME=2, BCO=0,
BPO=64});
PeakPick ([<$ResultFile 1>:AB], {NSP=9, PSM=1, WHR=0,
LXP=400.000000, FXP=4000.000000,
QP8=’NO’, QP9=0.200000, PTR=20.000000, QP4=’NO’,
QP7=0.800000,
QP6=’NO’,
QP5=80.000000, PPM=1, QP0=’NO’, QP3=4});
EndLoop (0);

PARAMETER SECTION

Running the Macro

Start the macro. After the background spectrum acquisition has finished, a mes-
sage “Please insert the sample.” will be displayed before starting each sample
measurement. The macro pauses until you confirmed the dialog by clicking
Continue.

Figure 30: Defining StartLoop Parameters
6–12 OPUS-NT Programming Bruker Optik GmbH

Measure 5 – Variable Loop Counters
6.6 Measure 5 – Variable Loop Counters

Task

So far we used a fixed Loop Counter for the command repetition. In your every
day work you might find it more suitable to let the user choose how many repe-
titions he actually needs upon launching the macro. This requires a variable
Loop Counter.

Macro Functions

StartLoop, EndLoop, Message, UserDialog

A numerical variable is used for the Loop Counter. The variable value will be
entered in a dialog box.

OPUS Functions

Measurement, Baseline Correction, Peak Picking

This example introduces no new OPUS functions.

Generating the Macro

1) Open the Macro Editor and load “Measure 4”.

2) Insert a blank line in the variable window by clicking on the button
on top of the variable window. Open the New/Edit Variable dialog by
clicking on .

3) In the top section of the dialog box you specify the variable type: select
“NUMERIC”.
Bruker Optik GmbH OPUS-NT Programming 6–13

How to Write Macros
4) Enter “Number of Samples” in the Name field.

5) Change the default value “0” of the Value field to “3”. This defines the
starting value which will later be displayed in the dialog box.

6) Check the Update Automatically box. This causes the last input made
by the user to be saved and displayed during the next run of the macro.
Otherwise, the default value “3” will always be used.

7) Close the dialog box by clicking on OK. This inserts a new line in the
variable window:
*NUMERIC <Number of Samples> = 3;

The asterisk indicates, that the variable will be updated automatically.

8) Now you have to replace the Loop Counter with the variable you just
defined. Double-click on the StartLoop command line. Open the Spe-
cial Macro Commands dialog box. Change the value of the Loop Count
field to <Number of Samples> by selecting this variable from the
drop-down list. Close the dialog by clicking on OK. The code changes
to:
StartLoop (<Number of Samples>, 0);

Figure 31: New/Edit Variable Dialog Box
6–14 OPUS-NT Programming Bruker Optik GmbH

Measure 5 – Variable Loop Counters

Alternatively to changing the code via the Special Macro Commands
dialog, you could have manually edited the code after double-clicking
on the StartLoop line. Change the old values in parentheses after the
StartLoop (3, 0) against the variable name.

9) Next, you have to create a user dialog box. Insert a blank line in the
command window, and open the Special Macro Commands dialog.
Open the drop-down list of the Command Name field, and quick-select
the UserDialog command by typing “u”.

10) A new dialog box (shown in Figure 11) opens. Enter “Multiple Sample
Acquisition” in the Title field. Leave the Option set to “STANDARD”.

11) Use the remaining fields to define the text of the user dialog box. A
drop-down list is provided for all fields. In the first field on the left side,
select the format that will be used to display the text in the user dialog.
Since we want the user to edit the value of the Loop Counter variable, we
select “EDIT”.

12) The drop-down list of the next field in the same row shows all variables
that are suited for the format chosen before. In our example, only <Num-
ber of Samples> is shown. Select this variable and exit the dialog
box by clicking on OK. This generates a new command line in the
macro.

13) Reposition the UserDialog command line to the beginning of the PRO-
GRAM SECTION. Store the macro as “Measure 5” and close the Macro
Editor.

Listing (MEASURE 5.MTX)

VARIABLES SECTION
FILE <$ResultFile 1> = AB, AB/Peak;
*NUMERIC <Number of Samples> = 1.000000000000000;

PROGRAM SECTION
UserDialog (Multiple Sample Acquisition, STANDARD,
EDIT:<Number of Samples>, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK);

Figure 32: Defining StartLoop Parameters
Bruker Optik GmbH OPUS-NT Programming 6–15

How to Write Macros
MeasureReference (0, {EXP=’Default.xpm’,
XPP=’C:\OPUS_NT\XPM’});
StartLoop (<Number of Samples>, 0);
Message (’Please insert sample.’, ON_SCREEN,
NO_TIMEOUT);
<$ResultFile 1> = MeasureSample (0,
{EXP=’Default.xpm’, XPP=’C:\OPUS_NT\XPM’});
Baseline ([<$ResultFile 1>:AB], {BME=2, BCO=0,
BPO=64});
PeakPick ([<$ResultFile 1>:AB], {NSP=9, PSM=1, WHR=0,
LXP=400.000000, FXP=4000.000000,
QP8=’NO’, QP9=0.200000, PTR=20.000000, QP4=’NO’,
QP7=0.800000,QP6=’NO’,
QP5=80.000000, PPM=1, QP0=’NO’, QP3=4});
EndLoop (0);

PARAMETER SECTION

Running the Macro

When you start the macro, a user dialog with the title “Multiple Sample Acqui-
sition”, and a field for numerical input will be displayed. The input field is
labelled Number of Samples, i.e. the variables’ name. Change its value from
“3” to “2” and click on Continue. Subsequently, two sample measurements will
be performed. When you start the macro again, the default value of the input
field now is “2”.

6.7 Load 1 – Loading and Processing a
Spectrum

Task

So far data processing was only performed on spectra acquired with the same
macro. The following examples show, how to load spectra from disk. The first
example loads a spectrum and performs a baseline correction, followed by a
normalization.

Macro Functions

In OPUS-OS/2, only a special macro command was available for loading spec-
tra. This is also supported by OPUS-NT for reasons of compatibility. In addti-
ion, the Load File command of OPUS-NT can be used in a macro. In the
following we will use both commands.
6–16 OPUS-NT Programming Bruker Optik GmbH

Load 1 – Loading and Processing a Spectrum
OPUS Functions

Load, Baseline Correction, Normalization

In this example the OPUS function Load File will be used.

Generating the Macro

1) Open the Macro Editor and select the Load File command from the
OPUS File pull-down menu.

2) Change to the \OPUS_NT\DATA directory, and select the file
ABBOE05.0. Click on Open.

3) Close the parameter dialog box without any further changes.

4) The following command line is generated:
<$ResultFile 1> = Load (0, {DAP=’C:\OPUS_NT\DATA’,
DAF=’Abboe05.0’, INP=’D:\OPUS\DEBUG\METHODS’,
IFP=’C:\OPUS_NT\METHODS’,INM=’DEFAULT.TXD’,
IFN=’DEFAULT’});

Similar to the Measurement command, a new FILE variable is generated
for the file that was loaded. However, the data block type (Spec) is dif-
ferent from the blocks of acquired spectra, and only used in combination
with macros. This block type allows to write macros, that can handle
any type of spectra.
FILE <$ResultFile 1> = Spec;

Similar to the first example, select the Baseline Correction command
and then Normalization from the OPUS Manipulate menu. Use in both
cases the [<$ResultFile 1>:Spec] variable.

5) Save the macro as “Load 1”.

Listing (LOAD 1.MTX)

VARIABLES SECTION
FILE <$ResultFile 1> = Spec;

PROGRAM SECTION
<$ResultFile 1> = Load (0, {DAP=’C:\OPUS_NT\DATA’,
DAF=’Abboe05.0’,
INP=’D:\OPUS\DEBUG\METHODS’,
IFP=’D:\OPUS\Release\METHODS’,
INM=’DEFAULT.TXD’, IFN=’DEFAULT’});
Baseline ([<$ResultFile 1>:Spec], {BME=2, BCO=0,
BPO=64});
Normalize ([<$ResultFile 1>:Spec], {NME=1,
NFX=4000.000000, NLX=400.000000, NWR=1});

PARAMETER SECTION
Bruker Optik GmbH OPUS-NT Programming 6–17

How to Write Macros
Running the Macro

The macro loads the file ABBOE05.0 and subtracts a baseline. Afterwards, the
spectrum is normalized. Note that if you start the macro for a second time, the
file ABBOE05.0 is loaded and processed again.

6.8 Load 2 – Loading and Processing
Several Spectra

Task

In the previous example only the file ABBOE05.0 was processed. To be able to
process several files the file name and its path must be stored in variables. We
define \OPUS_NT\DATA as the default directory.

Macro Functions

GetOpusPath, UserDialog

Two STRING variables are used to store the path and file name of the spectrum.
A user dialog will be used to allow the user to enter name and path. The
GetOpusPath function is used to determine the path of the OPUS main direc-
tory, which is the extended by the string “\DATA”.

OPUS Functions

Load, Baseline Correction, Normalization

We replace the file name and path statements of the Load function against vari-
ables.

Generating the Macro

1) Open the Macro Editor and load “Load 1”.

2) Append a blank line to the variable window, and open the New/Edit
Variable dialog box.

3) Since STRING is the default type, just enter “Path” as name in the Name
field. The Value field remains empty. Exit the dialog box.

4) Generate a second variable labelled “File Name”.

5) Insert a blank line to become the first line in the command window, and
open the Special Macro Commands dialog box. Select the function
GetOpusPath from the Command list. This function does not require
any parameters. The result will be returned to the STRING variable.
Choose <Path> from the Variable list. Close the dialog box.

6) Insert a blank line below the first line, and enter <Directory> =
’<Path>\DATA’. Don’t forget the backslash and remember to enclose
6–18 OPUS-NT Programming Bruker Optik GmbH

Load 2 – Loading and Processing Several Spectra
the expression by single quotes.

7) Now, we will add a user dialog box below line 2. Repeat steps 9 to 12
from the example “Measure 5”. This time you will need two lines of the
format EDIT, to which you assign the variables <File Name> and
<Path>. As a result the following line should be appended to the
macro:
UserDialog (Load, STANDARD, EDIT:<Path>,
EDIT:<File Name>, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK);

8) Replace the file name and directory statements in the Load command
line by the variables. Double-click on this line and then on the button at
the end of the line. This will open the OPUS Load File dialog.

9) Load any file from the directory. The parameter dialog box will be dis-
played again, listing the path and file name as the first two entries. Click
on the topmost field in the Assign Variable column. A drop-down list
replaces the entry field; choose the variable <Path> from this list.

10) Click on the cell below and select <File Name> as described above.
Closing the dialog box yields the following program line:
<$ResultFile 1> = Load (0, {DAP=’<Path>’,
DAF=’<File Name>’, INP=’D:\OPUS\DEBUG\METHODS’,
IFP=’C:\OPUS_NT\\METHODS’, INM=’DEFAULT.TXD’,
IFN=’DEFAULT’});

11) Store the macro as “Load 2”.

Listing (LOAD 2.MTX)

VARIABLES SECTION
FILE <$ResultFile 1> = Spec;
STRING <Path> = ’C:\OPUS_NT\DATA’;
STRING <File Name> = ’’;

Figure 33: Assigning Variable Values
Bruker Optik GmbH OPUS-NT Programming 6–19

How to Write Macros
PROGRAM SECTION
UserDialog (Load, STANDARD, EDIT:<Path>, EDIT:<File
Name>, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK);
<$ResultFile 1> = Load (0, {DAP=’<Path>’, DAF=’<File
Name>’,
INP=’D:\OPUS\DEBUG\METHODS’,
IFP=’D:\OPUS\Release\METHODS’,
INM=’DEFAULT.TXD’, IFN=’DEFAULT’});
Baseline ([<$ResultFile 1>:Spec], {BME=2, BCO=0,
BPO=64});
Normalize ([<$ResultFile 1>:Spec], {NME=1,
NFX=4000.000000, NLX=400.000000, NWR=1});

PARAMETER SECTION

Running the Macro

A dialog will be displayed, in which you have to enter the values for both vari-
ables. In the field “Directory”, the path to your directory is displayed. If you
enter “GLY.0” as file name you will see, that the macro also handles transmis-
sion spectra.

6.9 Load 3 – Multiple File Processing

Task

The previous example will be expanded to be able to load and process multiple
files.

Macro Functions

GetOpusPath, LoadFile, UserDialog, StartLoop, EndLoop

Instead of the OPUS Load File command, we will use the equivalent macro
function LoadFile. This function is able to load one or several files.

OPUS Functions

Baseline Correction, Normalization

This example introduces no new OPUS functions.

Generating the Macro

1) Open the Macro Editor and define three STRING variables <Path>,
<File Name> and <File>. Assign the value “C:\OPUS_NT\DATA”
to <Path> and “ABB*.0” to <File Name>.
6–20 OPUS-NT Programming Bruker Optik GmbH

Load 3 – Multiple File Processing
2) Append a user dialog box for <Path> and <File Name>.

3) In contrary to the OPUS Load File command, the LoadFile macro func-
tion uses a parameter combining path and file name. Therefore, we will
use the third variable <File> to combine the values of the remaining
two variables. Insert a blank line into the command window, and open
the Special Macro Commands dialog.

4) Select the Enter Expression function from the Command List. This
functions allows you to enter a variable assignment; in our example, we
want to assign a new variable value using two STRING variables.

5) Choose <File> from the Variable list. This is the variable that will
contain the result.

6) In the Expression field, select <Directory>.

7) Position the cursor in the Expression field after <Directory>. Add
“\<File Name>” and enclose the line in single quotes.

Exit the dialog box. The following line will be appended to the macro:
<File> = ’<Path>\<File Name>’;

8) Insert a blank line into the command window and open the Special
Macro Commands dialog. Select LoadFile.

9) In case of the LoadFile macro command, you have to define a FILE
variable for the data file intended to be loaded by yourself. Open the
variable window by clicking on the Add Variable button.

10) Define a FILE variable “Result”. From the first Value list, choose the
spectrum block “AB”. Don’t change the remaining two lists. Copy the
variable to the list by clicking Add and close the dialog box to get back
to the Special Macro Commands dialog.

Figure 34: Assigning Variable Values Using Enter Expression
Bruker Optik GmbH OPUS-NT Programming 6–21

How to Write Macros
11) From the Variable list, select the newly generated variable
[<Result>:AB]. Choose <File> from the File Name field and
“WARNING” from the Option list. This will add the following line to
the macro:
[<Result>:AB] = LoadFile (<File>, WARNING);

You see that a File expression (including the data block type) can be
used as result file in a command line as well.

12) By using wildcards (“*” or “?”) for the file name, we are able to load
more than one file that match the preselection. Hence, ABB*.0 will load
ABBOE05.0, ABBOE08.0 and ABBOE12.0. But we can state only one
variable for all files. In this case, the variable will automatically be

Figure 35: Defining a FILE Variable

Figure 36: Defining [<Result>:AB]
6–22 OPUS-NT Programming Bruker Optik GmbH

Load 3 – Multiple File Processing
expanded to an array variable, holding more that one value (in our
example files). Each value can be addressed using an index number (in
square brackets). The first index number is [0]. <xyz>[3] therefore
addresses the fourth value of the variable <xyz>.

13) There is an elegant and simple way to address the values of a FILE vari-
able array: use the StartLoop command with the variable name as Loop
Counter. Open the Special Macro Commands dialog box and select
StartLoop.

14) The [<Result>:AB] variable is also included in the Loop Count list.
Select this entry and set the Loop Index to “0”.

15) Add the OPUS functions Baseline Correction and Normalization, using
the [<Result>:AB] variable.

16) Finally, add the EndLoop command with a Loop Index “0” as the last
line, and save the macro as “Load 3”.

Listing (LOAD 3.MTX)

VARIABLES SECTION
STRING <Path> = ’C:\OPUS_NT\DATA’;
STRING <File Name> = ’ABB*.0’;
STRING <File> = ’’;
FILE <Result> = AB;

PROGRAM SECTION
UserDialog (Load multiple files, STANDARD,
EDIT:<Path>, EDIT:<File Name>, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK);
<File> = ’<Path>\<File Name>’;
[<Result>:AB] = LoadFile (<File>, WARNING);
StartLoop ([<Result>:AB], 0);
Baseline ([<Result>:AB], {BME=2, BCO=0, BPO=64});
Normalize ([<Result>:AB], {NME=1, NFX=4000.000000,
NLX=400.000000, NWR=1});
EndLoop (0);

PARAMETER SECTION

Running the Macro

This time we will use the Macro Debugger to test our macro.

1) From the OPUS Macro pull-down menu, select the Debug Macro com-
mand. Load the macro.

2) A dialog box containing the macros’ code will be displayed, the first line
is indicated by a small green arrow. This arrow is a pointer to indicate
the command that will be executed next.

3) Click on the Single Step button. The user dialog box will be displayed.
Since you already defined valid start values you can continue by closing
the box.
Bruker Optik GmbH OPUS-NT Programming 6–23

How to Write Macros
4) Note that the pointer now is in line two. The window at the bottom
shows which variables have been changed by the command executed
before and their current values.

Figure 37: Debugging Load 3
6–24 OPUS-NT Programming Bruker Optik GmbH

Load 3 – Multiple File Processing
5) A complete list of the macros’ variables is given on the Variables page
of the Debugger, including the variable type, the name and current
value. As you can see, <File> and <Result> have no value assigned
at this point.

Figure 38: Debugging Load 3 – Single Step Mode
Bruker Optik GmbH OPUS-NT Programming 6–25

How to Write Macros
6) Return to the Macro page and execute the next command. The result is
shown in the window at the bottom: <File> now contains the result of
the combination of both STRING variables.

7) The next step will execute the LoadFile function. All three spectra will
be loaded, the variable <Result> holds three different files. The first
file is listed twice for reasons that will be explained later.

8) The next step, StartLoop does not seem to perform any action. How-
ever, the command initiates the triple repetition of the following com-
mands. You can watch this when you continue to step through the
macro.

6.10 Load 4 – Multiple File Processing

Task

This example shows you an alternative route to load and process several files.
This time we will make use of the OPUS Load File command.

Figure 39: Debugging Load 3 – Variables Page
6–26 OPUS-NT Programming Bruker Optik GmbH

Load 4 – Multiple File Processing
Macro Functions

GetArrayCount, UserDialog, StartLoop, EndLoop, ScanPath

ScanPath reads the content of a directory. You have to specify a directory and a
file name using wildcards (e.g. C:\OPUS_NT\DATA\ABB*.0). All matching
file names are stored as array in a STRING variable.

GetArrayCount evaluates the number of elements stored in an array variable,
which then can be used as Loop Counter to address these elements.

OPUS Functions

Load, Baseline Correction, Normalization

This example introduces no new OPUS functions.

Generating the Macro

1) Open the Macro Editor and define the following STRING variables:
 STRING <File List> = ’’;

STRING <Path> = ’C:\OPUS_NT\DATA’;
STRING <Name> = ’ABB*.0’;
NUMERIC <Count> = 0;
NUMERIC <Index> = 0;

2) Create a user dialog box for <Path> and <Name> to be able to test the
macro under different prerequisites.

3) Add a blank line, call up the Special Macro Commands dialog box, and
select the ScanPath function from the Commands list. This command
requires a variable to store its result, choose the <File List> variable
from the Varible list.

4) This function uses only the file name and path where to look for the
requested file as a parameter. Select <Path> from the Variable list and
add “\<Name>”. Exit the dialog box.

5) Add a blank line and insert the GetArrayCount command; this command
evaluates, how many entries are stored in <File list>. The number
of entries will be stored in <Count>.

<Count> = GetArrayCount (<File list>);
6) <Count> will now be used to define the number of cycles of a loop.

Insert a StartLoop command with <Count> as Loop Counter and a Loop
Index of 0.

7) From the OPUS pull-down menu select the Load File command. Select
any file regardless of the directory because in the following we will
change the file name and path against variables. Click on Load. The
dialog box for parameter assignment will open automatically. Assign
<Path> to the first parameter “DAP”, and <File List> to the sec-
ond parameter (DAF). Since <File List> is an array variable you
also have to specify an index number. In our example we use
[<Index>] to read the complete file list. The line now reads
Bruker Optik GmbH OPUS-NT Programming 6–27

How to Write Macros
<File list>[<Index>].

8) In the next line, <Index> must increase by 1 to read the next list ele-
ment during the next cycle of the loop. Add a blank line to the macro
and enter:
<Index> = <Index> + 1;

9) Add the OPUS Baseline Correction function.

10) Add the EndLoop command.

11) Save the macro as “Load 4”.

Listing (LOAD 4.MTX)

VARIABLES SECTION
STRING <File List> = ’’;
STRING <Path> = ’C:\OPUS_NT\DATA’;
STRING <Name> = ’ABB*.0’;
NUMERIC <Count> = 0;
NUMERIC <Index> = 0;
FILE <$ResultFile 1> = Spec;
PROGRAM SECTION
UserDialog (Load multiple files, STANDARD,
EDIT:<Path>, EDIT:<Name>, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK,
BLANK);
<File List> = ScanPath (<Path>\<Name>);
<Count> = GetArrayCount (<File List>);
StartLoop (<Count>, 0);
<$ResultFile 1> = Load (0, {DAP=’<Path>’, DAF=’
<File List>[<Index>]’,
INP=’D:\OPUS\DEBUG\METHODS’,
IFP=’D:\OPUS\Release\METHODS’,
INM=’DEFAULT.TXD’, IFN=’DEFAULT’});
<Index> = <Index>+1;
Baseline ([<$ResultFile 1>:Spec], {BME=2, BCO=0,
BPO=64});
EndLoop (0);

PARAMETER SECTION

Running the Macro

As in the last example, we use the Macro Debugger to execute the macro.

1) After the user dialog box ScanPath is executed. Note that <File
List> now contains three file names.

2) As expected, the GetArrayCount function returns a value of 3 to
<Count>.

3) In line 5, the first file of the list is loaded.

4) In line 6, the value of <Index> is increased by 1 (current value is 1).

5) In line 7, the loaded file is baseline corrected.
6–28 OPUS-NT Programming Bruker Optik GmbH

Manipulation 1 – Processing of Files Already Loaded
6) We won’t execute the following two loop cycles step by step. There-
fore, by double-clicking on the line number of line 7 (Baseline), a break
point will be set, indicated by a small stop sign.

7) Now click on Run to Breakpoint. As you can see, the second spectrum
will be loaded; during this operation the Debugger is grayed. Also,
<Index> now has a value of 2.

8) Repeat the Run to Breakpoint cycle. The last file is loaded and
<Index> now has a value of 3.

9) A third click on Run to Breakpoint performs the baseline correction and
ends the macro.

The main difference to the last example is, that the macro command LoadFile
loads all three spectra before processing them in the loop. In this example, the
files will be loaded subsequently, while the macro goes through the loop. In the
case of only three files, this may seem of minor importance. However, if you
process a great number of files you will notice, that loading the files turns out to
be quite time consuming. In this case, the latter method is the method of choice.

6.11 Manipulation 1 – Processing of Files
Already Loaded

Task

So far all example macros either loaded or acquired the data prior to data pro-
cessing. However, there is a multitude of applications in which you may want
to process data that was already loaded. In this example, we will demonstrate a
general route to this type of data processing.

Macro Functions

This example introduces no new macro functions.

OPUS Functions

Baseline Correction

This example introduces no new OPUS functions.

Generating the Macro

1) Define a FILE variable <File> with an absorption data block.

2) Select the Baseline Correction function from the OPUS pull-down menu
and choose the <File> variable for processing.

3) Save the macro as “Manipulation 1”.
Bruker Optik GmbH OPUS-NT Programming 6–29

How to Write Macros
Listing (MANIPULATION 1.MTX)

VARIABLES SECTION
FILE <File> = AB;

PROGRAM SECTION
Baseline ([<File>:AB], {BME=2, BCO=0, BPO=64});

PARAMETER SECTION

Running the Macro

1) Load an absorption spectrum (e.g. ABBOE05.0) and start the macro.

2) A file selection box will open. Select the file you loaded before. Click-
ing on Continue will perform a baseline correction.

6.12 Manipulation 2 – Processing of Files
Already Loaded

Task

The previous macro will now be expanded by a user dialog box, from which
you can select the spectrum you want to process.

Figure 40: File Selection Box for Macros
6–30 OPUS-NT Programming Bruker Optik GmbH

Manipulation 2a – Saving Processed Files
Macro Functions

UserDialog

This example introduces no new macro functions.

OPUS Functions

Baseline Correction

This example introduces no new OPUS functions.

Generating the Macro

1) Load “Manipulation 1”.

2) Append a UserDialog command line to the macro, selecting FILE as the
variable type and [<File>:AB] as the variable.

3) Move this line to the top of the macro and save it as “Manipulation 2”.

Listing (MANIPULATION 2.MTX)

VARIABLES SECTION
FILE <File> = AB;

PROGRAM SECTION
UserDialog (0, STANDARD, FILE:[<File>:AB], BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);
Baseline ([<File>:AB], {BME=2, BCO=0, BPO=64});

PARAMETER SECTION

Running the Macro

In contrary to “Manipulation 1”, a user dialog is now displayed instead of the
file selection box.

6.13 Manipulation 2a – Saving Processed
Files

Task

OPUS-NT manipulates copies instead of the original file during data process-
ing. Therefore, the result of a data manipulation has to be stored explicitly. We
will demonstrate in this example, how files can be saved using a macro. In
addition, we will use the OPUS Unload File command, which is used to reduce
the numbers of files loaded.
Bruker Optik GmbH OPUS-NT Programming 6–31

How to Write Macros
Macro Functions

UserDialog

This example introduces no new macro functions.

OPUS Functions

Baseline Correction, Save As, Save, Unload

We will make use of both Save and Save As commands to store the data. After-
wards the file will be unloaded.

Generating the Macro

1) Load “Manipulation 2”.

2) Select Save File As from the OPUS File pull-down menu. Use
[<File>:AB] as the file to be saved and enter “Macrotest.0” as file
name. With the help of the Change Path button, navigate to the
“OPUS\WORK” subdirectory.

3) Ensure that on the Mode page the following options are selected:

• OPUS format

• Save All

• Remove All Copies

Close the dialog box by clicking on Save.

4) No changes are needed concerning the parameters; exit the parameter
dialog box.

5) Select the Save function from the OPUS pull-down menu. This function
replaces the original file, therefore you only have to select the file vari-
able. Here you also don’t need to change any parameters.

6) Select Unload File from the OPUS File pull-down menu. Again, you
only have to select the file variable.

7) Save the macro as “Manipulation 2a”.

Listing (MANIPULATION 2a.MTX)

VARIABLES SECTION
FILE <File> = AB;

PROGRAM SECTION
UserDialog (0, STANDARD, FILE:[<File>:AB], BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);
Baseline ([<File>:AB], {BME=2, BCO=0, BPO=64});
SaveAs ([<File>:AB], {DAP=’C:\OPUS_NT\WORK\’, OEX=’1’,
SAN=’Macrotest.0’, COF=18,
INP=’D:\OPUS\DEBUG\METHODS’,
IFP=’D:\OPUS\Release\METHODS’,
INM=’DEFAULT.TXD’, IFN=’DEFAULT’});
6–32 OPUS-NT Programming Bruker Optik GmbH

Manipulation 3 – Processing of Multiple Files Already Loaded
Save ([<File>:AB], {DAP=’C:\OPUS_NT\DATA’, OEX=’1’,
SAN=’calcul.0’,
COF=146,
INP=’D:\OPUS\DEBUG\METHODS’,
IFP=’D:\OPUS\Release\METHODS’,
INM=’DEFAULT.TXD’, IFN=’DEFAULT’});
Unload ([<File>:AB], {});

PARAMETER SECTION

Running the Macro

As in the last example, load a file first before starting the macro. Select this file
in the user dialog and click on Continue. You get a glimpse of the baseline-cor-
rected spectrum before the file is unloaded again. However, if you now open
the file you will see that it has been baseline-corrected. Also, check the file
“Macrotest.0” from the “WORK” directory; both files must be identical.

6.14 Manipulation 3 – Processing of Multiple
Files Already Loaded

Task

If you try to process more than one spectrum at a time with the previous exam-
ple by dropping several files in the file selection field, you will note that only
the last spectrum of the file list will be processed. In the following macro we
will show how to handle more than one file.

Macro Functions

UserDialog, StartLoop, EndLoop

We use a loop to repeatedly process an array of files. As we have seen in “Load
3” the StartLoop function is able to directly use an array as a Loop Counter.

OPUS Functions

Baseline Correction

This example introduces no new OPUS functions.

Generating the Macro

1) Load “Manipulation 2”.

2) Insert a StartLoop command using <File> as Loop Counter and a Loop
Index of “0” just below the user dialog command.

3) Append an EndLoop command to the macro and save it as “Manipulate
3”.
Bruker Optik GmbH OPUS-NT Programming 6–33

How to Write Macros
Listing (MANIPULATION 3.MTX)

VARIABLES SECTION
FILE <File> = AB;

PROGRAM SECTION
UserDialog (0, STANDARD, FILE:[<File>:AB], BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);
StartLoop ([<File>:AB], 0);
Baseline ([<File>:AB], {BME=2, BCO=0, BPO=64});
EndLoop (0);

PARAMETER SECTION

Running the Macro

Load several absorption spectra and run the macro. Select all spectra in the user
dialog and click on Continue. All selected spectra will be baseline-corrected.

6.15 Manipulation 4 – Multiple File
Processing Using Variable Parameters

Task

We expand the last macro to perform a peak pick on the baseline-corrected
spectrum. The frequency limits and the peak sensitivity should be kept vari-
able.

Macro Functions

UserDialog, StartLoop, EndLoop

This example introduces no new macro functions.

OPUS Functions

Baseline Correction, Peak Picking

This example introduces no new OPUS functions.

Generating the Macro

1) Load “Manipulation 3”.

2) Add three numerical variables:

• <x-Start Frequency> with a value of “1000”

• <x-End Frequency> with a value of “500”

• <Sensitivity> with a value of “10”
6–34 OPUS-NT Programming Bruker Optik GmbH

Manipulation 4 – Multiple File Processing Using Variable Parameters
3) Select the “Baseline” command line and choose Peak Picking from the
OPUS Evaluate pull-down menu. Select <File> and make sure that
Use File Limits on the Frequency Range page is not selected.

4) After clicking on Peak pick, the parameter dialog opens. Assign the fol-
lowing variables:

• <x-Start Frequency> to “FXP”

• <x-End Frequency> to “LXP”

• <Sensitivity> to “PTR”

5) Edit this user dialog box command in the first line. Add three Edit lines
for the numerical parameters.

6) Save the macro as “Manipulation 4”.

Listing (MANIPULATION 4.MTX)

VARIABLES SECTION

FILE <File> = AB, AB/Peak;
NUMERIC <x-Start Frequency> = 1000;
NUMERIC <x-End Frequency> = 500;
NUMERIC <Sensitivity> = 10;

PROGRAM SECTION
UserDialog (0, STANDARD, FILE:[<File>:AB], EDIT:<x-
Start Frequency>, EDIT:<x-End Frequency>,
EDIT:<Sensitivity>, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK,
BLANK, BLANK);
StartLoop ([<File>:AB], 0);
Baseline ([<File>:AB], {BME=2, BCO=0, BPO=64});
PeakPick ([<File>:AB], {NSP=9, PSM=1, WHR=0, LXP=<x-
End Frequency>, FXP=<x-Start Frequency>,
QP8=’NO’, QP9=0.200000, PTR=<Sensitivity>, QP4=’NO’,
QP7=0.800000, QP6=’NO’,
QP5=80.000000, PPM=1, QP0=’NO’, QP3=4});
EndLoop (0);

PARAMETER SECTION

Running the Macro

The user dialog shows the file list as before. First slelect the file to be processed
and then switch to the Parameter page. As you continue, you will see from the
peak labels on thee display that the specified limits have been used.
Bruker Optik GmbH OPUS-NT Programming 6–35

How to Write Macros
6.16 Average 1 – Averaging Spectra

Task

While most OPUS functions can be integrated into macros without any prob-
lems some functions require special consideration. One of these functions is the
Averaging function from the OPUS Manipulation pull-down menu which we
will use in the following two examples.

Usually, an OPUS function processes only one file at a time which is the reason
why these functions must be enclosed by a loop if several files should be pro-
cessed. The average function uses several files at once to calculate an average
spectrum.

Macro Functions

UserDialog, StartLoop, EndLoop

This example introduces no new macro functions.

OPUS Functions

Average

The average function uses several files at once to calculate an average spectrum,
which is stored in a new file. To include this function in a macro, we make use
of the fact that an existing average spectrum can be updated.

Generating the Macro

1) Open the Macro Editor and define two FILE variables <First File>
and <Next File>, each of them having an absorption data block
assigned.

2) Start by generating a user dialog box, in which you include these vari-
ables.

3) Now choose the Averaging function from the OPUS Manipulation pull-
down menu. Assign [<First File>:AB] as the spectrum used for
averaging and set the following parameters:

• Don’t select Update Average Spectrum

• Select Weighting with Number of Scans

• Don’t select Create/Update Standard Deviation Spectrum

• Don’t select Compute Average Report
6–36 OPUS-NT Programming Bruker Optik GmbH

Average 1 – Averaging Spectra
4) These settings create a new file (the corresponding variable [<$Result
File 1>:Spec] is automatically created) containing the average
spectrum of the selected file, i.e. only a copy. Click on Average and
confirm the parameter dialog box by clicking the OK button.

5) For the remaining files we need a loop with <Next Files>, acting as
Loop Counter:
StartLoop ([<Next Files>:AB], 0);

6) Choose the Averaging once more and select this time <Next Files>
as the spectrum to be averaged.

7) If you select the Update Average Spectrum parameter, you can pick the
average spectrum created during the first run ([<$Result File
1>:Spec]) from the list. This time the result is not stored in a new file,
but included in the average calculation during every cycle of the loop.

Figure 41: Averaging Dialog Box
Bruker Optik GmbH OPUS-NT Programming 6–37

How to Write Macros
8) Close the loop by appending the EndLoop command and save the macro
as “Average 1”.

Listing (AVERAGE 1.MTX)

VARIABLES SECTION
FILE <First File> = AB;
FILE <Next Files> = AB;
FILE <$ResultFile 1> = Spec;

PROGRAM SECTION
UserDialog (Average, STANDARD, FILE:[<First File>:AB],
FILE:[<Next Files>:AB],
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK,
BLANK, BLANK);
<$ResultFile 1> = Average ([<First File>:AB], 0, 0,
{QA0=1, QA2=0, QAE=’NO’, QAF=’NO’,
QAL=’LIS’, QAM=’D:\OPUS\Debug\’, QAN=’*.*’, QAO=0,
QFB=’’, QFC=’’});
StartLoop ([<Next Files>:AB], 0);
Average ([<Next Files>:AB], [<$ResultFile 1>:Spec], 0,
{QA0=1, QA2=0, QAE=’NO’, QAF=’YES’,
QAL=’LIS’, QAM=’D:\OPUS\Debug\’, QAN=’*.*’, QAO=0,
QFB=’’, QFC=’’});
EndLoop (0);

PARAMETER SECTION

Figure 42: Averaging Dialog Box – Update Average Spectrum
6–38 OPUS-NT Programming Bruker Optik GmbH

Average 2 – Averaging Spectra Including the Standard Deviation
Running the Macro

Start by loading three absorption spectra. Open the Macro Debugger and run
the macro.

1) After stepping through the first line, the user dialog is displayed, consist-
ing of two input fields. Enter the first spectrum into the upper field
(assigned to <First File>), and the remaining two spectra into the
lower field. Click on Continue.

2) The result is a new spectrum identical to the spectrum selected first.
Continue for two more steps.

3) After the next averaging operation the average spectrum is the average
of the first and second spectrum.

4) Click on Run to Breakpoint to end the macro. Verify the result by manu-
ally averaging the three spectra, using the OPUS Averaging function.
Compare the result to the file calculated by the macro. Both files should
be identical.

6.17 Average 2 – Averaging Spectra
Including the Standard Deviation

Task

In addition to the calculation of an average spectrum, it is possible to generate a
standard deviation spectrum and store it in a separate file. Similar to the aver-
age spectrum, it is possible to also update the standard deviation spectrum.

Macro Functions

StartLoop, EndLoop

This example introduces no new macro functions.

OPUS Functions

Average

This example introduces no new OPUS functions.

Generating the Macro

1) Load “Average 1”.

2) Edit the second line (the Average command) and select the Create/
Update Standard Deviation check box. Exit the Average dialog box and
the parameter dialog box. This only changes the parameter of the Aver-
age command in the macro.
Bruker Optik GmbH OPUS-NT Programming 6–39

How to Write Macros
3) However, as a consequence of the parameter change not only one but
two files will be generated by the macro. The [<$ResultFile
1>:Spec] variable will contain to files, the average spectrum and the
standard deviation spectrum.

4) Therefore, we also have to edit the Average command line within the
loop. In the Average dialog box, you must add an index to the file
selected for the average result: [<$ResultFile 1>:Spec]. In addi-
tion, check the Update Standard Deviation box, select [<$Result-
File 1>:Spec] as the result file and add an array index of “1”
manually.
[<$ResultFile 1>[1]:Spec]

5) Close the functions’ dialog box and save the macro as “Average 2”.

Listing (AVERAGE 2.MTX)

VARIABLES SECTION
FILE <First File> = AB;
FILE <Next Files> = AB;
FILE <$ResultFile 1> = Spec;

PROGRAM SECTION
UserDialog (Average, STANDARD, FILE:[<First File>:AB],
FILE:[<Next Files>:AB],
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK,
BLANK, BLANK);
<$ResultFile 1> = Average ([<First File>:AB], 0, 0,
{QA0=1, QA2=0, QAE=’YES’, QAF=’NO’,
QAL=’LIS’, QAM=’D:\OPUS\Debug\’, QAN=’*.*’, QAO=0,
QFB=’’, QFC=’’});
StartLoop ([<Next Files>:AB], 0);
Average ([<Next Files>:Spec], [<$ResultFile
1>[0]:Spec], [<$ResultFile 1>[1]:Spec], {QA0=1,
QA2=0, QAE=’YES’, QAF=’YES’, QAL=’LIS’,
QAM=’D:\OPUS\Debug\’, QAN=’*.*’, QAO=0,
QFB=’’, QFC=’’});
EndLoop (0);

PARAMETER SECTION

Running the Macro

Start the macro and choose the same files as for the last example. In addition to
the average spectrum, a standard deviation spectrum is calculated.
6–40 OPUS-NT Programming Bruker Optik GmbH

Parameter 1 – Reading Out Spectrum Parameters
6.18 Parameter 1 – Reading Out Spectrum
Parameters

Task

Accessing parameters and data of a spectrum file is a common task. In the fol-
lowing we will use macros to read out data from a spectrum file. In our first
example we read the sample name information from a file, add a charge number
and write the result to the file.

Macro Functions

GetParameter, UserDialog,

To read information from an OPUS file we use the GetParameter command,
which returns the parameter in a STRING variable. We use EnterExpression to
merge two text variables and plain text.

OPUS Functions

Edit Parameter

Only a few parameters of an OPUS file can be edited, due to security reasons.
For editing the parameters, the Edit Parameter function from the OPUS Edit
pull-down menu is available. However, this functions always saves the com-
plete parameter set from the OPUS file. Therefore, we also have to read the
complete parameter set, regardless of the number of parameters we want to edit.

Generating the Macro

1) Define a FILE variable named <File> and assign it an absorption
block. Define two text variables <Sample Name> and <Charge Num-
ber>; you don’t need to assign any values to the variables.

2) Create a user dialog box with the variables <File> (type FILE) and
<ChargeCharge Number> (type EDIT).

3) Open the Special Macro Commands dialog box and select the GetPa-
rameter command from the Commands list. Select <Sample Name>
from the Variable list and enter “0” as index. We will use this variable
also for the remaining OPUS parameters. Select the variable <File>
from the File list for the first argument. “SNM” addresses the sample
name; choose it from the parameter list of the second argument. After
closing the dialog box the following line will be appended to the macro:
<Sample Name>[0] = GetParameter ([<File>:AB], SNM);

4) We have to write similar statements for the remaining parameters sam-
ple form (“SFM”), operator name (“CNM”) and sample number
(“RSN”). Pay special attention to define the correct index numbers.
<Sample Name>[1] = GetParameter ([<File>:AB], SFM);
Bruker Optik GmbH OPUS-NT Programming 6–41

How to Write Macros
<Sample Name>[2] = GetParameter ([<File>:AB], CNM);
<Sample Name>[3] = GetParameter ([<File>:AB], RSN);

5) In the next line we change the sample name:
<Sample Name>[0] = ’<Sample Name>[0] Charge:
<Charge Number>’;

Either append this line manually or use the Special Macro Commands
dialog and EnterExpression. Make sure to include the correct index
number. As you can see you can combine variables and text in this type
of statement.

6) Select the Edit Parameter command from the OPUS Edit pull-down
menu. Choose [<File>:AB] from the Select File field and leave the
remaining fields blank. Click on Change and assign the variables in the
parameter dialog that appears next.

7) Save the macro as “Parameter 1”.

Listing (PARAMETER 1.MTX)

VARIABLES SECTION
STRING <Sample Name> = ’’;
STRING <Charge Number> = ’’;
FILE <File> = AB;

PROGRAM SECTION
UserDialog (0, STANDARD, FILE:[<File>:AB],
EDIT:<Charge Number>, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK);
<Sample Name>[0] = GetParameter ([<File>:AB], SNM);
<Sample Name>[1] = GetParameter ([<File>:AB], SFM);
<Sample Name>[2] = GetParameter ([<File>:AB], CNM);
<Sample Name>[3] = GetParameter ([<File>:AB], RSN);
<Sample Name>[0] = ’<Sample Name>[0]
Charge: <Charge Number>’;
ParameterEditor ([<File>:AB], {CNM=’<Sample Name>[2]’,
SNM=’<Sample Name>[0]’,
SFM=’<Sample Name>[1]’, RSN=<Sample Name>[3], XTX=’’,
YTX=’’, ZTX=’’,
XAF=1.000000, YAF=1.000000, ZAF=1.000000});

PARAMETER SECTION

Running the Macro

In the OPUS Browser load a file and check its sample parameters by placing the
cursor on the sample parameters. A small frame appears, listing the values of
the data block. Start the macro, select the file you loaded and enter any text you
like as charge number. Click on Continue and compare the parameter with its
old value.
6–42 OPUS-NT Programming Bruker Optik GmbH

Parameter 2 – Generating Info Blocks
6.19 Parameter 2 – Generating Info Blocks

Task

If you ever created you own library you know that the files you want to include
must have an information block. In general you probably stated the sample
name and the preparation method during the sample measurement. We can
expand the last macro and have it create an info block in addition.

Macro Functions

GetParameter, UserDialog,

This example introduces no new macro functions.

OPUS Functions

Edit Parameter, Information Input

We will use the Information Input function from the OPUS Edit pull-down
menu to append an information block to a spectrum (assuming that the spectrum
does not already include one).

Generating the Macro

1) Load “Parameter 1”.

2) Select the Information Input function from the OPUS Edit pull-down
menu.

3) Select [<File>:AB]. The “DEFAULT.TXT” mask should be loaded
by now. If this is not the case click on Load Text Mask and load
“DEFAULT.TXT” from the “OPUS\METHODS” directory.

4) Enter the variables in the text fields:

• in the Compound Name field: <Sample Name>[0]

• in the Sample Preparation field: <Sample Name>[1]

• in the Charge Number field: <Charge Number>
Bruker Optik GmbH OPUS-NT Programming 6–43

How to Write Macros
5) If you prefer to enter these parameters in the parameter dialog box, you
must enter a random character in the fields of the Information Input
dialog you want to access. Click on Add Information to switch to the
parameter dialog box and edit the entries.

6) If necessary, enter the variables in the fourth column. Keep in mind, that
<Sample Name> is an array variable for which you have to specify an
index value.

Figure 43: Information Input Dialog Box

Figure 44: Parameters of the InfoInput command
6–44 OPUS-NT Programming Bruker Optik GmbH

Parameter 2 – Generating Info Blocks
7) Save the macro as “Parameter 2”.

Listing (PARAMETER 2.MTX)

VARIABLES SECTION
STRING <Sample Name> = ’’;
STRING <Charge Number> = ’’;
FILE <File> = AB, Info;

PROGRAM SECTION
UserDialog (0, STANDARD, FILE:[<File>:AB],
EDIT:<Charge Number>, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK);
<Sample Name>[0] = GetParameter ([<File>:AB], SNM);
<Sample Name>[1] = GetParameter ([<File>:AB], SFM);
<Sample Name>[2] = GetParameter ([<File>:AB], CNM);
<Sample Name>[3] = GetParameter ([<File>:AB], RSN);
<Sample Name>[0] = ’<Sample Name>[0] Charge: <Charge
Number>’;
ParameterEditor ([<File>:AB], {CNM=’<Sample Name>[2]’,
SNM=’<Sample Name>[0]’,
SFM=’<Sample Name>[1]’, RSN=<Sample Name>[3], XTX=’’,
YTX=’’, ZTX=’’,
XAF=1.000000, YAF=1.000000, ZAF=1.000000});
InfoInput ([<File>:AB], {INP=’D:\OPUS\Debug\Methods’,
INM=’DEFAULT.TXD’, IFN=’DEFAULT’,
I01=’<Sample Name>[0]’, I07=’<Sample Name>[1]’,
I11=’<Charge Number>’,
T01=’TEXT:Compound Name’, T02=’TEXT:Molecular For-
mula’, T03=’TEXT:Molecular Weight’,
T04=’TEXT:CAS Number’, T05=’TEXT:Origin’,
T06=’TEXT:Boiling Point’,
T07=’TEXT:Sample Technique’, T08=’TEXT:Weight’,
T09=’TEXT:Manufacturer’,
T10=’TEXT:Reference’, T11=’TEXT:Charge Number’,
T12=’TEXT:Comment’});

PARAMETER SECTION

Running the Macro

The macro generates a new information block. Open a report window and have
the information block displayed.
Bruker Optik GmbH OPUS-NT Programming 6–45

How to Write Macros
6.20 Parameter 3 – Replacing Info Block
Entries

Task

The last macro always generated a new information block or replaced an exist-
ing information block. Now we will only change one or a few entries in an
existing block, in our example the compound name.

Macro Functions

This example introduces no new macro functions.

OPUS Functions

Information Input

This example introduces no new OPUS functions.

Generating the Macro

1) Define a FILE variable <File> with an AB data block associated and a
text variable <Sample Name> with “New Sample Name” as initial
value.

2) Open the Information Input dialog box and select <File>. Load the
“DEFAULT.TXD” mask if necessary and enter <Sample Name>. Exit
this dialog box as well as the parameter dialog box without any further
changes.

3) Add “IRM = ’R’” in the parameter section of the InfoInput command
line. The parameter section is the part enclosed in braces:
InfoInput ([<File>:AB], {IRM=’R’,
INP=’C:\OPUS........

4) Save the macro as “Parameter 3”.

Listing (PARAMETER 3.MTX)

VARIABLES SECTION
FILE <File> = AB, Info;
STRING <Sample Name> = ’New Sample Name’;

PROGRAM SECTION
InfoInput ([<File>:AB], {IRM=’R’,
INP=’C:\OPUS_NT\METHODS’, INM=’DEFAULT.TXD’,
IFN=’DEFAULT’, I01=’<Sample Name>’, T01=’TEXT:Compound
Name’, T02=’TEXT:Molecular Formula’, T03=’TEXT:Molecu-
lar Weight’,
T04=’TEXT:CAS Number’, T05=’TEXT:Origin’,
T06=’TEXT:Boiling Point’,
T07=’TEXT:Sample Technique’, T08=’TEXT:Weight’,
6–46 OPUS-NT Programming Bruker Optik GmbH

Parameter 4 – Read From a Report
T09=’TEXT:Manufacturer’,
T10=’TEXT:Reference’, T11=’TEXT:Charge Number’,
T12=’TEXT:Comment’});

PARAMETER SECTION

Running the Macro

Load a file and first run “Parameter 2”. This generates an information block,
which you can display in a report window. Now run “Parameter 3” and check
the block again. You will see that only the sample name has changed.

6.21 Parameter 4 – Read From a Report

Task

Often it is necessary to read specific data from a report, which contains the
results of several data evaluation methods. In this example, we will extract the
number of peaks of a peak pick and subsequently use a loop to read the frequen-
cies of the peaks which will be displayed in a message box. In addition, we will
format the output.

Macro Functions

StartLoop, EndLoop, Message, FromReportHeader, FromReportMatrix

We will use the FromReportHeader command to extract a value from the header
of a report. That requires to ascertain the position of the desired information
(here the number of peaks). In our case the number of hits is found in the third
row of the header.

Headers always consist of two parts: a title (e.g. number of hits) and the actual
value. The command FromReportHeader allows you to select either the title
(option: LEFT) or the value (option: RIGHT).

The FromReportMatrix command allows to read data from a matrix if the col-
umn number is known. We want to read frequency values which are located in
the first column.

Note: Both commands use the report and subreport parameters which should be
set to “1” and “0”, respectively. Only a Quant and Ident report may consist of
several main reports and/or subreports. Refer to the manual of these software
packages for details.

We will demonstrate the use of characters in combination with a message box,
which are laos used as control characters in the command lines. Such a control
character will be interpreted as a printable character, if it is repeated twice; if
Bruker Optik GmbH OPUS-NT Programming 6–47

How to Write Macros
you want to enclose the unit cm-1 by brackets, you achieve this by typing ’[[cm-
1]]’. The following characters act as control characters:

< > [] { } ’ ; , :

OPUS Functions

Peak Picking

This example introduces no new OPUS functions.

Generating the Macro

1) Define a FILE variable <File> with an AB data block associated and
three numerical variables <Count>, <Index> and <Peak
Position>. Initialize <Index> with “1”.

2) Select the Peak Picking function from the OPUS Evaluate pull-down
menu to generate a report (consisting of a peak table). On the Select
Files page, choose the variable <File> and set the Sensitivity to “20”.
On the Frequency Range page select Use File Limits.

3) From the Special Macro Commands dialog box, choose the
FromReportHeader command. Enter the following values:

• Variable: <Count>

• File: [<File>:AB/Peak]

• Report: “1”

• Subreport: “0”

• Header Line: “3”

• Header Part: “RIGHT”

4) Insert the StartLoop command using <Count> as variable.

5) From the Special Macro Commands dialog box, choose the

Figure 45: Special Macro Commands Dialog – FromReportHeader Definition
6–48 OPUS-NT Programming Bruker Optik GmbH

Parameter 4 – Read From a Report
FromReportMatrix command. Enter the following values:

• Variable: <Peak Position>

• File: [<File>:AB/Peak]

• Report: “1”

• Subreport: “0”

• Row: <Index>

• Column: “1”

6) We make use of the Message command to display the value, that was
read from the report block. Enter the following message text:
’<Index>, Peak at <[,0]Peak Position>[[cm-1]]’.
Included in the command line is a statement to format the output; this
statement is enclosed in square brackets and defines the number of deci-
mals in our example no digits after the decimal point. [,2] for example
would cause an output with two digits after the decimal point. However,
these statements only concern the text output and do not change the data.
Further information about text formatting can be found in the Macro
Reference section.

7) We avoid the necessity to confirm each message by setting the Time
parameter to “5”. As a result, the message will be displayed for 5 sec-
onds.

8) Next we increment the variable <Index> for the line number by 1:
<Index> = <Index> +1

9) Finally, the loop has to be closed by the EndLoop command.

10) Save the macro as “Parameter 4”.

Listing (PARAMETER 4.MTX)

VARIABLES SECTION

FILE <File> = AB, AB/Peak;
NUMERIC <Count> = 0;

Figure 46: Special Macro Commands Dialog – FromReportMatrix Definition
Bruker Optik GmbH OPUS-NT Programming 6–49

How to Write Macros
NUMERIC <Index> = 1;
NUMERIC <Peak Position> = 0;

PROGRAM SECTION

PeakPick ([<File>:AB], {NSP=9, PSM=1, WHR=1,
LXP=400.000000, FXP=4000.000000, QP8=’NO’,
QP9=0.200000, PTR=20.000000, QP4=’NO’, QP7=0.800000,
QP6=’NO’, QP5=80.000000, PPM=1, QP0=’NO’, QP3=4});
<Count> = FromReportHeader ([<File>:AB/Peak], 1, 0, 3,
RIGHT);
StartLoop (<Count>, 0);
<Peak Position> = FromReportMatrix ([<File>:AB/Peak],
1, 0, <Index>, 1);
Message (’<Index>. Peak at <[,0]Peak Position> [[cm-
1]]’, ON_SCREEN, 5);
<Index> = <Index>+1;
EndLoop (0);

PARAMETER SECTION

Running the Macro

Load a data file and run “Parameter 4”. After you selected the spectrum to be
processed, a message indicating the first peak is displayed. In the bottom part
of the message box, a counter shows the remaining display time. You can skip
the message box at any time by clicking on OK or wait until the timer runs out.

6.22 Control 1 – Controlling a Macro Using
Buttons

Task

So far, we mostly wrote linear code, that is all command lines will be processed
subsequently. The first exception from a linear progression was introduced
with the loop command. Now we will learn how to tweak a macro program, in
order to make it flexible and more powerful.

Note that the following examples should only demonstrate the principle of how
to control the flow in a macro and therefore will only use Macro functions.

In our first example we will integrate two buttons (Button 1 and Button 2) in a
user dialog box to launch different actions. Clicking on the buttons will display
different messages, followed by the initial dialog box. The macro will only be
terminated by clicking on Continue.
6–50 OPUS-NT Programming Bruker Optik GmbH

Control 1 – Controlling a Macro Using Buttons
Macro Functions

Label, Goto, Message, User Dialog

We will define two BUTTON variables which are linked to different labels.
Clicking on the respective button in the user dialog box will then result in a
jump to one of these labels. The tweaks will be closed by the Goto command.

The Goto command allows to continue a macro at any line of the code that will
be indicated by a label. The label can be placed anywhere in the macro.

OPUS Functions

This example introduces no new OPUS functions.

Generating the Macro

1) Open the New/Edit Variable dialog box and define a BUTTON variable;
enter “Button 1” in the Name field and “first” in the Goto Label field.
This generates the following line in the variables window:
BUTTON <Button 1> = Goto (first)

As you can see, the variable is linked to a jump via the Goto command.

2) Add another BUTTON variable (“Button 2”) and link it to the label
“second”.

3) Open the Special Macro Commands dialog box, select the UserDialog
command and BUTTON as variable type. From the drop-down list

Figure 47: New/Edit Variable Dialog Box – Defining a Button Variable
Bruker Optik GmbH OPUS-NT Programming 6–51

How to Write Macros
choose <Button 1>. To display both buttons in the same line, type
“+<Button 2>” after the first variable name.

4) Each time you click on Continue in a user dialog box, the next program
line will be processed. We will redirect the macro to the last line by
inserting a Goto statement after the line containing the UserDialog com-
mand. Use “end” as label name. You will notice that a label with the
same name will automatically be created. We will move this label to the
end of the code in the last step.

5) Insert the label for the first jump:
Label (first)

6) Append a message that indicates the correct target like “First Button
pressed”. Set the Timer to 5 seconds.

7) After the delay time has expired the user dialog box should be displayed
again. Therefore, insert another Goto command with “start” as the label
name. Again, the label “start” is automatically generated. Move the
label to the top of the PROGRAM SECTION.

8) In a similar manner, add the label for the second button, its message and
the Goto statement.

9) Finally, move the line Label (end) to the last position of the macro.

10) Save the macro as “Control 1”.

Figure 48: Defining Button Variables
6–52 OPUS-NT Programming Bruker Optik GmbH

Control 1a – Controlling a Macro Using Buttons
Listing (CONTROL 1.MTX)

VARIABLES SECTION
BUTTON <Button 1> = Goto (first);
BUTTON <Button 2> = Goto (second);

PROGRAM SECTION
Label (start);
UserDialog (0, STANDARD, BUTTON:<Button 1>+<Button 2>,
BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK);
Goto (end);
Label (first);
Message (’First Button pressed’, ON_SCREEN, 5);
Goto (start);
Label (second);
Message (’Second Button pressed’, ON_SCREEN, 5);
Goto (start);
Label (end);

PARAMETER SECTION

Running the Macro

Run the macro and test both buttons in the user dialog box. Exit the macro by
clicking on Continue.

6.23 Control 1a – Controlling a Macro Using
Buttons

Task

We will modify “Control 1”, so that the default buttons (Continue, Help and
Cancel) won’t be displayed in the user dialog box.

Macro Functions

Label, Goto, Message, User Dialog

We will use the option NODEFAULTBUTTON to suppress the default buttons
in the user dialog box.

OPUS Functions

This example introduces no new OPUS functions.
Bruker Optik GmbH OPUS-NT Programming 6–53

How to Write Macros
Generating the Macro

1) Open “Control 1” and edit the UserDialog command line. Choose
NODEFAULTBUTTON from the Option list.

2) Save the macro as “Control 1a”.

Listing (CONTROL 1a.MTX)

VARIABLES SECTION
BUTTON <Button 1> = Goto (first);
BUTTON <Button 2> = Goto (second);

PROGRAM SECTION
Label (start);
UserDialog (0, NODEFAULTBUTTON, BUTTON:<Button
1>+<Button 2>, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK);
Goto (end);
Label (first);
Message (’First Button pressed’, ON_SCREEN, 5);
Goto (start);
Label (second);
Message (’Second Button pressed’, ON_SCREEN, 5);
Goto (start);
Label (end);

PARAMETER SECTION

Running the Macro

When you run the macro, only the two buttons you defined are displayed. To
exit the macro, you now have to click on the small x on the right side of the title
bar.

6.24 Control 2 – Controlling a Macro Using If,
Else And Elseif

Task

Simple program structures can easily be controlled by the Goto command. The
extensive use of Goto statements in longer macros can be confusing. The If
statement is a better way of structuring complex programs.

The following example analyzes several parameters entered in a user dialog
box:
6–54 OPUS-NT Programming Bruker Optik GmbH

Control 2 – Controlling a Macro Using If, Else And Elseif
• Check box: if the check box is selected by the user a message will be
displayed.

• Drop-down list showing the options “yes” and “no”: if “yes” is cho-
sen a message will be displayed.

• Numerical field: the input of a numerical field will be compared to a
value (here greater than or equals 10) and the result will be displayed.

• Text field: a text search will be performed using the input of the text
field on another predefined text and the result will be displayed.

Macro Functions

If, Else, Endif, Message, User Dialog, FindString

The If command compares two variables or values using several numerical or
text operators:

Numerical operators:

.EQ. tests identity

.GT. tests if value 1 is greater than value 2

.LT. tests if value 1 is smaller than value 2

.GTEQ. tests if value 1 is greater than or equal to value 2

.LTEQ. tests if value 1 is smaller than or equal to value 2

.NE. tests if value 1 is not equal to value 2

Text operators:

.NOCASE_PARTOF. tests if text 1 is included in text 2, the text is
not case-sensitive

.CASE_PARTOF. tests if text 1 is included in text 2, the text is
case-sensitive

An If statement must be terminated by an Endif statement; Else can be included
optionally:

• If statement without Else – if the condition is met, all code enclosed
by the If/Endif structure will be processed. Otherwise, the program
jumps to the line following the Endif statement. This structure is
used if an action should either be processed or not.

• If statement in combination with Else – if the condition is met, all
code enclosed by the If/Else structure will be processed. Then a
jump to the Endif statement follows and the macro continues with the
line following the Endif statement. Otherwise, the code enclosed by
the Else/Endif will be processed. This structure is used to process
two alternatives.

We will use new line types in the user dialog box: CHECKBOX, COMBOBOX
and TEXT.
Bruker Optik GmbH OPUS-NT Programming 6–55

How to Write Macros
OPUS Functions

This example introduces no new OPUS functions.

Generating the Macro

1) Define the following variables:

BOOL <Checkbox> = TRUE; (the value of BOOL variables can either
be “TRUE” or “FALSE”)

STRING <Yes or No> = ’’;(no value defined)
NUMERIC <Test of Numbers> = 0;
STRING <Search in> = ’abcdefghijk’;
STRING <Search for> = ’’;(no value defined)
NUMERIC <Result> = 0;

2) Initialize the variable <Yes or No> with “Yes” and “No” by entering
the following command lines:
<Yes or No>[0] = ’Yes’;
<Yes or No>[1] = ’No’;

3) Include a user dialog box of the following type:

Type Variable Comment

CHECKBOX <Checkbox> a check box will be displayed
COMBOBOX <Yes or No> a drop-down list consisting of

the two values will be displayed
EDIT <Test of Numbers> field for numerical input
TEXT <Search in> displays a text
EDIT <Search for> field for text input
6–56 OPUS-NT Programming Bruker Optik GmbH

Control 2 – Controlling a Macro Using If, Else And Elseif
4) Now the test sequences are included. First we will test if the check box
was selected in the user dialog. Include the If command and choose
<Checkbox> as the first variable. This variable has the value “TRUE”
if the check box has been selected, otherwise “FALSE”. Set the Condi-
tion to “.EQ.” and Variable 2 to “TRUE”.

5) In case the check box was selected the following message should be dis-
played:

Figure 49: Defining the User Dialog

Figure 50: Defining the If Statement
Bruker Optik GmbH OPUS-NT Programming 6–57

How to Write Macros
Message (’Check box was checked’, ON_SCREEN,
NO_TIMEOUT);

6) The Endif(); statement closes the first If sequence.

7) Next we will test which value was selected from the drop-down list.
This can be done by clicking the (array) type variable without an array
index. The variable always returns the value previously chosen from a
combo box. Include the following If statement:
Variable 1 <Yes or No>
Condition .CASE_PARTOF.
Variable 2 “Yes”

8) Again, if the string “Yes” was selected the following message should be
displayed:
Message (’Yes was selected’, ON_SCREEN, NO_TIMEOUT);

9) Close the second If statement with the Endif(); command.

10) The third test compares the user input (stored in <Test of Num-
bers>) to 10. Include the following If statement:
Variable 1 <Test of Numbers>
Condition .GEQT.
Variable 2 “10”

11) If the input was greater than 10 or equals 10, the next line is executed
and should show the following message:
Message (’Number is >>= 10’, ON_SCREEN, NO_TIMEOUT);

Note the repeated “>” sign.

12) In order to be able to display another message in case the input is
smaller than 10, we include the Else(); command.

13) The message following the Else(); command will only be processed
if the input was smaller than 10:
Message (’Number is << 10’, ON_SCREEN, NO_TIMEOUT);

14) We close this If structure with the Endif(); command.

15) The last test is a text comparison. This time we choose an alternative
route. We use the FindString function which searches one text segment
in a second text. The result of the search is the position of the text
searched for, starting at 0. If the query was unsuccessful -1 will be
returned.

Open the Special Macro Commands dialog box and select the
FindString command. Use <Result> as variable name for the position
of the string and set the remaining parameters as follows:
Search in <Search in>
Search for <Search for>
Search Option “CASE”

16) Now we only need to check whether the returned value differs from -1:
If (<Result>, .NE., -1);

17) Again we need to display two messages depending on the outcome of
the search. Append a messages stating that the text was found, fol-
lowed by Else(). In the next line include a message stating that the
text was not found and terminate the structure by Endif().

18) Save the macro as “Control 2”.
6–58 OPUS-NT Programming Bruker Optik GmbH

Control 2 – Controlling a Macro Using If, Else And Elseif
Listing (CONTROL 2.MTX)

VARIABLES SECTION

BOOL <Checkbox> = TRUE;
STRING <Yes or No> = ’’;
NUMERIC <Test of Numbers> = 0;
STRING <Search in> = ’abcdefghijk’;
STRING <Search for> = ’’;
NUMERIC <Result> = 0;

PROGRAM SECTION

<Yes or No>[0] = ’Yes’;
<Yes or No>[1] = ’No’;
UserDialog (0, STANDARD, CHECKBOX:<Checkbox>, COM-
BOBOX:<Yes or No>, EDIT:<Test of Numbers>,
TEXT:<Search in>, EDIT:<Search for>, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);
If (<Checkbox>, .EQ., TRUE);
Message (’Checkbox was checked’, ON_SCREEN,
NO_TIMEOUT);
Endif ();
If (<Yes or No>, .CASE_PARTOF., ’Yes’);
Message (’Yes was selected’, ON_SCREEN, NO_TIMEOUT);
Endif ();
If (<Test of Numbers>, .GTEQ., 10);
Message (’Number is >>= 10’, ON_SCREEN, NO_TIMEOUT);
Else();
Message (’Number is smaller than 10’, ON_SCREEN,
NO_TIMEOUT);
Endif();
<Result> = FindString (<Search in>, <Search for>,
CASE);
If (<Result>, .NE., -1);
Message (’Text was found’, ON_SCREEN, NO_TIMEOUT);
Else();
Message (’Text was not found’, ON_SCREEN, NO_TIMEOUT);
Endif();

PARAMETER SECTION

Running the Macro

Complex programs like these should preferably be tested with the Macro
Debugger. Check if all combinations work and if the conditions are met suc-
cessfully.
Bruker Optik GmbH OPUS-NT Programming 6–59

How to Write Macros
6.25 Control 3 – Error Handling

Task

When writing macros it is crucial to know if all functions are executed cor-
rectly. Making mistakes while writing your own macros will eventually be
unavoidable. Most of the OPUS and Macro functions will return an error code,
that can checked within a macro and can be used to change the flow in a macro.

In this example, we will use the OPUS Load File command which returns an
error message if the indicated spectrum is not found.

Macro Functions

If, Else, Endif, Message, User Dialog,

We use the keyword MACROERROR in combination with the If command to
test for errors. The If command must be placed right after the function to be
tested.

If MACROERROR is used with the message command, a specific error mes-
sage will appear on the screen while running the macro.

OPUS Functions

Load, Baseline Correction, Normalize

This example introduces no new OPUS functions.

Generating the Macro

1) We will base this example on the “Load 2” macro.

2) Insert an If statement after the Load function; use “MACROERROR” as
Variable 1, the .EQ. condition and “TRUE” as Variable 2.
If (MACROERROR, .EQ., TRUE);

3) In case of an error, we will make use of the MACROERROR keyword
to display an error message.
Message (MACROERROR, ON_SCREEN, NO_TIMEOUT);

4) We would like the macro to proceed normally if no error occurs. There-
fore, we include an Else(); statement.

5) Append an Endif(); statement to become the last line of the macro.

6) Save the macro as “Control 3”.

Listing (CONTROL 3.MTX)

VARIABLES SECTION

FILE <$ResultFile 1> = Spec;
6–60 OPUS-NT Programming Bruker Optik GmbH

Timer 1 – Timer Function With Delay Time
STRING <Path> = ’C:\OPUS_NT\DATA’;
STRING <File Name> = ’XYZ’;

PROGRAM SECTION

UserDialog (Laden, STANDARD, EDIT:<Path>, EDIT:<File
Name>, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);
<$ResultFile 1> = Load (0, {DAP=’<Path>’, DAF=’<File
Name>’, INP=’D:\OPUS\DEBUG\METHODS’,
IFP=’D:\OPUS\Release\METHODS’, INM=’DEFAULT.TXD’,
IFN=’DEFAULT’});
If (MACROERROR, .EQ., TRUE);
Message (MACROERROR, ON_SCREEN, NO_TIMEOUT);
Else ();
Baseline ([<$ResultFile 1>:Spec], {BME=2, BCO=0,
BPO=64});
Normalize ([<$ResultFile 1>:Spec], {NME=1,
NFX=4000.000000, NLX=400.000000, NWR=1});
Endif ();

PARAMETER SECTION

Running the Macro

Run the macro and enter a non-valid file name. After clicking on Continue, an
error message is shown. Also try an existing file name.

6.26 Timer 1 – Timer Function With Delay
Time

Task

In certain situations a time control of the macro is desirable. Examples are cer-
tain actions, that should be launched or repeated at a given time or simply the
evaluation of the current date and time during run time.

We start by programming a clock that will turn itself off after a delay of one
minute.

Macro Functions

StartLoop, EndLoop, GetTime, StaticMessage, Timer

The GetTime function returns the current date and time. Separate variables are
used to return the year, month, day, hour, minute and second.

We will bundle the date and time in two text lines with the help of format func-
tions, and display them in a static message box. Contrary to a regular message
Bruker Optik GmbH OPUS-NT Programming 6–61

How to Write Macros
box, the static message won’t interfere with processing the commands of the
macro. A repeated call of the static message refreshes the display or can be
used to hide the message. We will refresh the display every second. This is
done by placing the Timer command in a loop.

We format all variable output to two digits; include [2] as formatting command.
The result will be a leading “0” in case of one digit values, while only the last
two digits will be displayed if the value has more than two digits:

value of the variable: 1 displayed value: 01
value of the variable: 1999 displayed value: 99

OPUS Functions

This example introduces no new OPUS functions.

Generating the Macro

1) Define the following numerical variables: <Year>, <Month>,
<Day>, <Hour>, <Minute> and <Second>.

2) The macro will be controlled by a loop with the counter set to 60 (corre-
sponging to a run time of 60 seconds).
StartLoop (60, 0);

3) Open the Special Macro Commands dialog box and select the GetTime
function. Due to the large number of return values of this function, the
variables are passed as function arguments.
GetTime (<Year>, <Month>, <Day>, <Hour>, <Minute>,
<Second>);

4) Now select the StaticMessage command and leave the value of Option
set to “SHOW”. Enter an expression for the date in the first line:
<Date> = ’<[2]Day>.<[2]Month>.<[2]Year>’;
In the second line, enter an expression for the time (note the double
colons):
<Time> = ’<[2]Hour>::<[2]Minute>::<[2]Second>’;
6–62 OPUS-NT Programming Bruker Optik GmbH

Timer 1 – Timer Function With Delay Time
5) Append the Timer command with Option set to “WAITTIME” and Time
set to “1”. This causes the macro to wait for one second.

6) Append an EndLoop statement and save the macro as “Timer 1”.

Listing (TIMER 1.MTX)

VARIABLES SECTION

NUMERIC <Hour> = 0;
NUMERIC <Minute> = 0;
NUMERIC <Second> = 0;
NUMERIC <Year> = 0;
NUMERIC <Month> = 0;
NUMERIC <Day> = 0;

PROGRAM SECTION

StartLoop (60, 0);
GetTime (<Year>, <Month>, <Day>, <Hour>, <Minute>,
<Second>);
StaticMessage (SHOW, {’<[2]Day>.<[2]Month>.<[2]Year>’,
’<[2]Hour>::<[2]Minute>::<[2]Second>’});
Timer (WAITTIME, 1);
EndLoop (0);
PARAMETER SECTION

Figure 51: Static Message
Bruker Optik GmbH OPUS-NT Programming 6–63

How to Write Macros
Running the Macro

A small dialog box is shown in the upper-left part of your screen after you
started the macro. The current date and time will be displayed for one minute.
The displayed time is refreshed every second.

6.27 Timer 2 – Timer Function Using a Clock

Task

Another option of the Timer function allows to wait until a specified time has
been reached. In this example, we will evaluate the current time, add one
minute and pause the macro until the clock reaches this time. After one minute
has passed a message will be displayed.

Macro Functions

GetTime, Message, Timer

We will use the Timer command in combination with the WAITUNTIL key-
word.

OPUS Functions

This example introduces no new OPUS functions.

Generating the Macro

1) Define three numerical variables: <Hour>, <Minute> and <Sec-
ond>.

2) Open the Special Macro Commands dialog box and select the GetTime
function. Since we don’t need the date set the parameters for <Year>,
<Month> and <Day> to “0”. Use <Hour>, <Minute> and <Sec-
ond> for the remaining parameters.
GetTime (0, 0, 0, <Hour>, <Minute>, <Second>);

3) Now we add one minute to the current time:
<Minute> = <Minute> + 1;

4) Choose the Timer command from the Command Name list in the Special
Macro Commands dialog box and select WAITUNTIL in the Option

Figure 52: Displaying Date and Time
6–64 OPUS-NT Programming Bruker Optik GmbH

Timer 3 – Timer Function Using the If Statement
field. Enter the new time in the HH:MM:SS format into the Time field:
<Hour>:<Minute>:<Second>

5) Append a message box displaying the calculated time:
Message (’It is <[2]Hour>::<[2]Minute>::<[2]Second>’
, ON_SCREEN, NO_TIMEOUT);

6) Save the macro as “Timer 2”.

Listing (TIMER 2.MTX)

VARIABLES SECTION

NUMERIC <Hour> = 0;
NUMERIC <Minute> = 0;
NUMERIC <Second> = 0;

PROGRAM SECTION

GetTime (0, 0, 0, <Hour>, <Minute>, <Second>);
<Minute> = <Minute> + 1;
Timer (WAITUNTIL, <Hour>:<Minute>:<Second>);
Message (’It is <Hour>::<Minute>::<Second>’,
ON_SCREEN, NO_TIMEOUT);

PARAMETER SECTION

Running the Macro

After starting the macro, the message “Macro Waiting” will be displayed. The
remaining time is shown in the lower part of the box. You can immediately
continue the macro by clicking on Continue.

6.28 Timer 3 – Timer Function Using the If
Statement

Task

“Timer 2” has the disadvantage, that no commands are processed while the
macro pauses. The following macro presents an alternative way. As in “Timer
2”, we evaluate the current time and add one minute. But in addition a message
is displayed for 2 seconds, after every 10 seconds until the calculated time has
passed. Finally, a message showing the current time will be displayed.

Macro Functions

GetTime, Message, Timer, If, Else, Endif, Goto

We will use an If statement in combination with the TIME keyword.
Bruker Optik GmbH OPUS-NT Programming 6–65

How to Write Macros
OPUS Functions

This example introduces no new OPUS functions.

Generating the Macro

1) Load “Timer 2” and delete all code from the PROGRAM SECTION
except the first two lines.

2) Insert a label:
Label (Action);

3) Insert an If statement and enter the calculated time (as HH:MM:SS) in
the field Variable 1. Enter “.GT.” and “TIME” as Condition and Vari-
able 2. TIME causes the If statement to compare the current time to the
value of Variable 1.

4) The operator .GT. ensures, that the command lines following the If state-
ment will be processed until the condition is met. We use the following
message, visible for 2 seconds, to indicate that the calculated time is not
reached.
 Message (’Macro still working’, ON_SCREEN, 2);

5) Use the Timer function to wait another 10 seconds:
Timer (WAITTIME, 10);

6) Append Goto (Action); to jump to the label after 10 seconds have
elapsed.

7) Append an Else(); statement to execute the following lines after the
specified time has been reached.

8) After the predefined time has been reached the following message will
be displayed:
Message ('It is <Hour>::<Minute>::<Second>',
ON_SCREEN, NO_TIMEOUT);

9) Close the If statement with Endif();

10) Save the macro as “Timer 3”.

Listing (TIMER 3.MTX)

VARIABLES SECTION

NUMERIC <Hour> = 0;
NUMERIC <Minute> = 0;
NUMERIC <Second> = 0;

PROGRAM SECTION

GetTime (0, 0, 0, <Hour>, <Minute>, <Second>);
<Minute> = <Minute> + 1;
Label (Action);
If (<Hour>:<Minute>:<Second>, .GT., TIME);
Message (Macro still working, ON_SCREEN, 2);
Timer (WAITTIME, 10);
Goto (Action);
Else ();
6–66 OPUS-NT Programming Bruker Optik GmbH

Main 1 – Calling Sub Routines with RunMacro
Message (’It is <Hour>::<Minute>::<Second>’,
ON_SCREEN, NO_TIMEOUT);
Endif();

PARAMETER SECTION

Running the Macro

When you start the macro, two alternating messages will be displayed: “Macro
still working“ and “Macro waiting”. After one minute, the last message will be
displayed.

6.29 Main 1 – Calling Sub Routines with
RunMacro

Task

The examples so far have been relatively simple. If you are facing a complex
task you will notice, that the total length of the macro increases rapidly. To
keep macros clearly structured and simple to read they should be divided into
small sub routines. These routines can be tested individually and independent
from the status of the main macro. The task of the main macro should therefore
be restricted to call these sub routines and exert the overall control.

Our first example, will be a main macro calling “Measure 3” as a sub routine.
Before and after calling the sub routine messages should be displayed.

Macro Functions

RunMacro, Message

This example introduces no new Macro functions.

OPUS Functions

This example introduces no new OPUS functions.

Generating the Macro

1) Start with displaying a message:
Message (’Submacro is started’, ON_SCREEN,
NO_TIMEOUT);

2) From the OPUS pull-down menu, select the Run Macro command. A
load file dialog box will be displayed. Choose “Measure 3” from the
Macro directory. Exit the parameter dialog box and append another
message:
Bruker Optik GmbH OPUS-NT Programming 6–67

How to Write Macros
Message (’Submacro has finished’, ON_SCREEN,
NO_TIMEOUT);

3) Save the macro as “Main 1”.

Listing (MAIN 1.MTX)

VARIABLES SECTION

PROGRAM SECTION

Message (’Submacro is started’, ON_SCREEN,
NO_TIMEOUT);
RunMacro (0, {MPT=’C:\OPUS_NT\Macro’, MFN=’MEASURE
3’});
Message (’Submacro has finished’, ON_SCREEN,
NO_TIMEOUT);

PARAMETER SECTION

Running the Macro

When you start the macro, the first message will be displayed. After confirming
the dialog, a background spectrum and three sample spectra are measured.
Finally, the second message will be displayed.

6.30 Main 2 – Calling Sub Routines with
CallMacro

Task

The previous example can easily be implemented, but has its limitations. For
instance, data measured or loaded in the sub macro are not accessible from the
sub macro and vice versa. Also, parameter values cannot be exchanged
between both programs. These restrictions can be overcome by using the Call-
Macro command.

We will use the macro “Manipulate 2”, which performs a baseline correction on
a spectrum, as a sub routine and display two messages in the main macro, prior
to and after the data processing.

Macro Functions

CallMacro, GetMacroPath, UserDialog, Message

We will use the CallMacro command to access the sub routine. CallMacro is
able to forward variables to the routine via a user dialog box included in the sub
routine. This dialog box must contain these variables in the same order and
6–68 OPUS-NT Programming Bruker Optik GmbH

Main 2 – Calling Sub Routines with CallMacro
with the same type in which they appear in the CallMacro command line. In our
example, we will exchange only one FILE variable.

We determine the path of the sub macro with the GetMacroPath command.
This command returns the path to the directory from which the main macro was
started (and which also must contain the sub macro). This ensures that macros
work independent of a specific directory structure.

OPUS Functions

This example introduces no new OPUS functions.

Generating the Macro

1) Start a new macro and define a FILE variable <File> with an absorp-
tion block associated and a TEXT variable <Path>.

2) Insert the GetMacroPath command and store the result in <Path>.

3) Create a user dialog box to be able to assign a spectrum to <File>.

4) Display the following message:
Message (’Submacro is started’, ON_SCREEN,
NO_TIMEOUT);

5) Select the CallMacro command from the Special Macro Commands dia-
log box. A new dialog box will be displayed. In the first field we enter
the path and file name of the sub macro to be called:
’<Path>\manipulate 2.mtx’
You don’t have to enter the file name extension “.MTX”. This allows
you to either run macros in text or binary format without the need to
modify a macro.

The remaining two columns are used to define the parameter exchange.
In the left column, enter the parameter to be forwarded; select
[<File>:AB] from the list. The right column holds the returned
parameters. We don’t need to make any entries here, exit the dialog by
clicking OK.
Bruker Optik GmbH OPUS-NT Programming 6–69

How to Write Macros
6) Finally, include a message to indicate that the sub macro has been pro-
cessed:
Message (’Submacro has finished’, ON_SCREEN,
NO_TIMEOUT);

7) Save the macro as “Main 2”.

Listing (MAIN 2.MTX)

VARIABLES SECTION

STRING <Path> = ’’;
FILE <File> = AB;

PROGRAM SECTION
<Path> = GetMacroPath ();
UserDialog (Main Macro, STANDARD, FILE:[<File>:AB],
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);
Message (’Submacro is started’, ON_SCREEN,
NO_TIMEOUT);
CallMacro (’<Path>\manipulation 2.mtx’, {[<File>:AB]},
{});
Message (’Submacro has finished’, ON_SCREEN,
NO_TIMEOUT);
PARAMETER SECTION

Figure 53: Call a Submacro Dialog Box
6–70 OPUS-NT Programming Bruker Optik GmbH

Main 3 – Returning Values From a Sub Routine
Running the Macro

In OPUS, load a spectrum and run the macro in the Macro Debugger. Step
through the first three command lines and select the spectrum previously
loaded. When the CallMacro line is reached, an additional button is displayed
in the Macro Debugger: Step Into Submacro. Upon clicking this button, a new
dialog box containing the sub macro is displayed. While this dialog is active,
you have no access to the main macro. Now, step through the sub macro; note
that the user dialog of the sub macro is not displayed. It is used only to assign
the values forwarded by the main macro (here the spectral data) to one of its
own variables. After the sub macro has been completely processed, the main
macro takes control again.

6.31 Main 3 – Returning Values From a Sub
Routine

Task

In this example we will call two sub macros. The first sub macro generates a
new spectrum by multiplying a spectrum with the Spectrum Calculator. The
second sub macro is based on “Parameter 4”, which we will extend and save as
“Submacro 2”. This macro creates a peak table with variable frequency limits
and sensitivity. All values (the spectrum name, multiplication factor, and the
parameters for the peak picking) should be entered in the main macro by the
user and then forwarded to the sub macros. The peaks will be read from the
peak table and displayed in a message.

Macro Functions

CallMacro, GetMacroPath, UserDialog, Message, StartLoop, EndLoop,
FromReportHeader

This example introduces no new macro functions.

OPUS Functions

Spectrum Calculator, Peak Picking

We will use the Spectrum Calculator from the OPUS Manipulate pull-down
menu. This function always generates a new result file.

Generating the Macro

1) Start a new macro for the first sub macro and define a FILE variable
<File> and a NUMERICAL variable <Factor>.

2) Create a user dialog box and insert both variables.
Bruker Optik GmbH OPUS-NT Programming 6–71

How to Write Macros
3) Open the OPUS Manipulate menu and select the Spectrum Calculator.
Select the variable [<File>:AB] and multiplicate it by 2. Click on
the “=” sign. The parameter dialog box opens. We want to use a vari-
able instead of a constant factor, therefore we need to modify the follow-
ing line for the parameter FOR:
’[<File>:AB]*<Factor>’

4) After clicking on OK, a new FILE variable <$ResultFile 1> is gen-
erated.

5) Append a user dialog box, containing only <$ResultFile 1>. This
causes <$ResultFile 1> to be returned to the main macro.

6) Save the macro as “Submacro 1”.

7) Load “Parameter 4”.

8) Add three NUMERICAL variables <x-Start>, <x-End> and <Sen-
sitivity>.

9) Add a user dialog containing the variables <File>, <x-Start>, <x-
End> and <Sensitivity>. Move this line to the top of the macro.

Edit the PeakPick command and deactivate the option Use File Limits.
In the parameter dialog box assign the following variables:
FXP <x-Start>
LXP <x-End>
PTR <Sensitivity>

10) Save the macro as “Submacro 2”.

11) Load “Main 2” and add the following variables:
NUMERIC <x-Start> = 4000;
NUMERIC <x-End> = 3000;
NUMERIC <Sensitivity> = 1;
NUMERIC <Factor> = 0.5;
FILE <New File> = AB;

12) Append the four NUMERICAL variables to the user dialog in line two.

13) Change the message text of the messages in line three and five to “Sub-
macro 1...”

14) Edit the CallMacro command and change the name of the sub macro to
“Submacro 1.mtx”. Add <Factor> as second parameter to be
exchanged. Choose [<New File>:AB] from the Returned Paramters
list for the [<File>:AB] variable.
6–72 OPUS-NT Programming Bruker Optik GmbH

Main 3 – Returning Values From a Sub Routine
15) Add the following message:
Message (’Submacro 2 is started’, ON_SCREEN,
NO_TIMEOUT);

16) Insert a CallMacro command; enter ’<Path>\submacro 2.mtx’ in
the Sub Macro field. Select [<New File>:AB], <x-Start>, <x-
End> and <Sensitivity> as parameters to be transferred. Sub
macro 2 does not return any values.

17) Add the following message:
Message (’Submacro 2 has finished’, ON_SCREEN,
NO_TIMEOUT);

18) Save the macro as “Main 3”.

Listing (SUBMACRO 1.MTX)

VARIABLES SECTION

FILE <File> = AB;
NUMERIC <Factor> = 0;
FILE <$ResultFile 1> = AB;

PROGRAM SECTION

Figure 54: Defining Parameters For Sub Macro 1
Bruker Optik GmbH OPUS-NT Programming 6–73

How to Write Macros
UserDialog (0, STANDARD, FILE:[<File>:AB], EDIT:<Fac-
tor>, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK);
<$ResultFile 1> = Calculator ([<File>:AB], {CDI=1,
FOR=’[<File>:AB]*<Factor>’});
UserDialog (0, STANDARD, FILE:[<$ResultFile 1>:AB],
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);

PARAMETER SECTION

Listing (SUBMACRO 2.MTX)

VARIABLES SECTION

FILE <File> = AB, AB/Peak;
NUMERIC <Count> = 0;
NUMERIC <Index> = 1;
NUMERIC <Peak Position> = 0;
NUMERIC <x-Start> = 0;
NUMERIC <x-End> = 0;
NUMERIC <Sensitivity> = 0;

PROGRAM SECTION

UserDialog (0, STANDARD, FILE:[<File>:AB], EDIT:<x-
Start>, EDIT:<x-End>, EDIT:<Sensitivity>, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK);
PeakPick ([<File>:AB], {NSP=9, PSM=1, WHR=0, LXP=<x-
End>, FXP=<x-Start>, QP8=’NO’, QP9=0.200000, PTR=<Sen-
sitivity>, QP4=’NO’, QP7=0.800000, QP6=’NO’,
QP5=80.000000, PPM=1, QP0=’NO’, QP3=4});
<Count> = FromReportHeader ([<File>:AB/Peak], 1, 0, 3,
RIGHT);
StartLoop (<Count>, 0);
<Peak Position> = FromReportMatrix ([<File>:AB/Peak],
1, 0, <Index>, 1);
Message (’<Index>. Peak at <[,0]Peak Position> [[cm-
1]]’, ON_SCREEN, 5);
<Index> = <Index>+1;
EndLoop (0);

PARAMETER SECTION

Listing (MAIN 3.MTX)

VARIABLES SECTION

STRING <Path> = ’’;
FILE <File> = AB;
NUMERIC <x-Start Frequency> = 4000;
NUMERIC <x-End Frequency> = 3000;
NUMERIC <Sensitivity> = 1;
6–74 OPUS-NT Programming Bruker Optik GmbH

Output 1 – Directing Output to a File
FILE <New File> = AB;
NUMERIC <Factor> = 0.5;

PROGRAM SECTION

<Path> = GetMacroPath ();
UserDialog (Main Macro, STANDARD, FILE:[<File>:AB],
EDIT:<x-Start Frequency>, EDIT:<x-End Frequency>,
EDIT:<Sensitivity>, EDIT:<Factor>, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);
Message (’Submacro 1 is started’, ON_SCREEN,
NO_TIMEOUT);
CallMacro (’<Path>\submacro 1.mtx’, {[<File>:AB],
<Factor>}, {[<New File>:AB]});
Message (’Submacro 1 has finished’, ON_SCREEN,
NO_TIMEOUT);
Message (’Submacro 2 is started’, ON_SCREEN,
NO_TIMEOUT);
CallMacro (’<Path>\submacro 2.mtx’, {[<New File>:AB],
<x-Start Frequency>, <x-End Frequency>, <Sensitiv-
ity>}, {});
Message (’Submacro 2 has finished’, ON_SCREEN,
NO_TIMEOUT);

PARAMETER SECTION

Running the Macro

Similar to the last example, use the Macro Debugger to test the macro.

6.32 Output 1 – Directing Output to a File

Task

The last two examples demonstrate how to handle data output. The first exam-
ple simply writes three text lines to a file. This file should then be read and its
content displayed. Finally, we will delete the file.

Macro Functions

TextToFile, Message, StartLoop, EndLoop, Delete

TextToFile writes text line by line to a specified file. The text will either be
appended to an existing file, or a new file can be created to hold the text. The
reverse case involves using the ReadTextFile command. This command reads a
text file line by line and stores the content in an array.

A set of macro commands exist to copy, rename and delete files. We will use
the Delete command to delete the text file created before.
Bruker Optik GmbH OPUS-NT Programming 6–75

How to Write Macros
OPUS Functions

This example introduces no new OPUS functions.

Generating the Macro

1) Start a new macro and define the following variables.
STRING <Path> = ’’;
STRING <Lines> = ’’;
STRING <Text> = ’’;
NUMERIC <Count> = 0;
NUMERIC <Index> = 0;

2) Initialize the first three array elements of <Lines>:
<Lines>[0] = ’Line 1’
<Lines>[1] = ’Line 2’
<Lines>[2] = ’Line 3’

3) Get the current OPUS path using the GetOpusPath command and save it
in <Path>.

4) Expand the <Path> variable by the subdirectory “WORK”.

5) Select the TextToFile command from the Special Macro Commands dia-
log box. Fill in the following text:
Path <Path>
File Name “Text.txt”
Text <Lines>[0]
Output Option “REPLACE_TEXT”

REPLACE_TEXT generates a new file or overwrites an existing one
with the same name.

6) Repeat these steps twice, each time incrementing the array counter of
the <Lines> variable. Instead of “REPLACE_TEXT” use
“APPEND_TEXT” to append these lines to the file.

7) Append the ReadTextFile command to read the text file. In the Text File
Name field, enter ’<Path>\test.txt’. Specify <Text> to hold the return
value.

8) Use the GetArrayCount command to determine the number of elements
contained in <Text>; save it in <Count>.

9) Start a loop using <Count> as loop counter.

10) Include an array element of <Text> in a message, use <Index> as
array index.

11) Increase <Index> by one and close the loop with EndLoop().

12) Append the Delete command. Only the path and file name is required as
parameter. State the file to be deleted by entering
’<Path>\test.txt’.

13) Save the macro as “Output 1”.

Listing “OUTPUT 1.MTX”

VARIABLES SECTION
6–76 OPUS-NT Programming Bruker Optik GmbH

Output 2 – Plotting Spectra
STRING <Path> = ’’;
STRING <Lines> = ’’;
STRING <Text> = ’’;
NUMERIC <Count> = 0;
NUMERIC <Index> = 0;

PROGRAM SECTION

<Lines>[0] = ’Line 1’;
<Lines>[1] = ’Line 2’;
<Lines>[2] = ’Line 3’;
<Path> = GetOpusPath ();
<Path> = ’<Path>\WORK’;
TextToFile (<Path>, Test.txt, <Lines>[0],
REPLACE_TEXT);
TextToFile (<Path>, Test.txt, <Lines>[1],
APPEND_TEXT);
TextToFile (<Path>, Test.txt, <Lines>[2],
APPEND_TEXT);
<Text> = ReadTextFile (’<Path>\Test.txt’);
<Count> = GetArrayCount (<Text>);
StartLoop (<Count>, 0);
Message (<Text>[<Index>], ON_SCREEN, NO_TIMEOUT);
<Index> = <Index>+1;
EndLoop (0);
Delete (’<Path>\test.txt’);

PARAMETER SECTION

Running the Macro

Run the macro from the Macro Debugger. Watch for the three messages that
are displayed.

6.33 Output 2 – Plotting Spectra

Task

We will demonstrate how to plot spectra in different ways. The first command
will plot two spectra in one frame. The second command draws two spectra in
two different frames.

Macro Functions

UserDialog

This example introduces no new macro functions.
Bruker Optik GmbH OPUS-NT Programming 6–77

How to Write Macros
OPUS Functions

Plot

To plot spectra, we use the OPUS Print Spectra function from the Print menu.

Generating the Macro

1) Start a new macro and define two FILE variables <File 1> and
<File 2>.

2) Add a user dialog containing both variables.

3) From the OPUS Print pull-down menu, choose the Print Spectra func-
tion. Select “FRAME1.PLE” (from the SCRIPT directory) as template
and [<File 1>:AB] as variable. Close the dialog by clicking on Plot.
As you can see in the parameter dialog, the parameter PPA itself consists
of a parameter list. You should neither change this parameter nor the
template, because they are linked to each other.

4) In contrary to all other OPUS commands, Print Spectra allows to print
several spectra at once. If you would like to include two or more spectra
in the same frame, add their names to the file selection list. Note that the
file names are not separated by commas.
Plot ([<File 1>:AB] [<File 2>:AB], {...

5) In the same manner, add a second Plot command, this time using
“FRAME2.PLE” as template. It contains two frames labelled “OBEN”
(upper) and “UNTEN” (lower), between which you switch using the
pull down list. Assign [<File 1>:AB] to “OBEN” and [<File
2>:AB] to “UNTEN”. Exit the dialog by clicking on Plot. Now you
see, that in the command line generated this time the file names are sep-
arated by commas, indicating that they will be plotted in different
frames.
Plot ([<File 1>:AB], [<File 2>:AB], {...

6) Save the macro as “Output 2”.

Listing (OUTPUT 2.MTX)

VARIABLES SECTION

FILE <File 1> = AB;
FILE <File 2> = AB;

PROGRAM SECTION

UserDialog (0, STANDARD, FILE:[<File 1>:AB],
FILE:[<File 2>:AB], BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);
Plot ([<File 1>:AB][<File 2>:AB], {PDV=’Printer’,
SCP=’C:\OPUS_NT\Scripts’, SCN=’frame1.PLE’, PUN=’CM’,
6–78 OPUS-NT Programming Bruker Optik GmbH

Output 2 – Plotting Spectra
POP=’D:\OPUS\Debug\PRINTS’, POF=’PRINT.TXT’, PDH=0,
PPA=’FRM=1,NPL=0,XSP=4000,XEP=400,YMN=0.0,YMX=1.2,ASE=
NO,CWN=NO,CSU=-200.0,,COL=,’, PL2=20});
Plot ([<File 1>:AB], [<File 2>:AB], {PDV=’Printer’,
SCP=’C:\OPUS_NT\Scripts’, SCN=’frame2.PLE’, PUN=’CM’,
POP=’D:\OPUS\Debug\PRINTS’, POF=’PRINT.TXT’, PDH=0,
PPA=’FRM=2,NPL=0,XSP=4000,XEP=400,YMN=0.0,YMX=1.2,ASE=
NO,CWN=NO,CSU=-
200.0,,COL=,NPL=0,XSP=4000,XEP=400,YMN=0.0,YMX=1.2,ASE
=NO,CWN=NO,CSU=-200.0,,COL=,’, PL2=20});

PARAMETER SECTION

Running the Macro

In OPUS, load two absorption spectra and start the macro. Choose a spectrum
for each FILE variable in the user dialog box and click on Continue. Two plots
will be printed.
Bruker Optik GmbH OPUS-NT Programming 6–79

How to Write Macros
6–80 OPUS-NT Programming Bruker Optik GmbH

A Basic Program with DDE Communication Capability
7 Writing External Programs

It is not the intention of this manual to provide a general introduction to pro-
gramming. Basic knowledge of the fundamentals of writing programs and
experience in either Basic or C is required. This chapter demonstrates the
design of programs that interact with OPUS, using simple examples (which can
also be found on the OPUS CD).

7.1 A Basic Program with DDE
Communication Capability

VisualBasic offers an simple approach to establish DDE communication,
because DDE functionality has been implemented in certain elements. Further-
more, graphical user interfaces can easily be generated in VisualBasic.

This example can be found on your OPUS CD as Form1.frm (program) and
OPUSFrontEnd.vbp (project file).

The form consists of three buttons (Take Reference, Measure Sample and Exit)
and a text box called ddeLink, which supplies the communication and is also
used for text output.

7.1.1 Initializing the Connection

The Load function (Form_Load) serves to interpret a parameter, which con-
tains a text command, as a program that is to be launched. This functionality is
used in the Basic program to start OPUS. The function connectToServer
opens the connection to OPUS.

Figure 55: File Form1
Bruker Optik GmbH OPUS-NT Programming 7–1

Writing External Programs
Option Explicit
Dim connected As Integer
Dim timeOut As Integer
Dim serverName As String

Private Sub Form_Load()
Dim BefZl
timeOut = 6000 ’ in ~ tenths of a second
connected = 0
BefZl = Command()
If Len(BefZl) > 0 Then
 Shell (BefZl)
End If
serverName = "OPUS|System"
connectToServer (serverName)
End Sub

Its main purpose is to initialize the DDE functionality of the ddeLink text box
object. First the LinkMode is set to vbLinkNotify, which is the asynchronous
mode (the Basic program does not pause). As soon as a command was pro-
cessed by OPUS, the LinkNotify event of the ddeLink object will be acti-
vated. In general, this has proven to be useful, because otherwise the Basic
program will wait for a result to be returned and in the meantime will not pro-
cess any input (e.g. like Cancel). By setting the LinkTopic to OPUS|System,
the Basic program rgistered a connection from the system with the given name.
If OPUS has been running, it has requested a DDE service using this name and
will function as a server. In addition, the LinkTimeout is defined.

Public Function connectToServer(server As String) As
Integer
connectToServer = 0
On Error GoTo connectToServerErr
ddeLink.LinkMode = vbLinkNotify
ddeLink.LinkTimeout = 100 ’ give time for connection
ddeLink.LinkTopic = server ’ Set link topic.
ddeLink.LinkTimeout = timeOut
connectToServer = 1
connected = 1
ddeLink = "Connected to " + server
Exit Function
connectToServerErr:
connected = 0
ddeLink = Err.Description
Exit Function
End Function

7.1.2 Processing the Commands

Both routines, which are started by pressing one of the buttons have a similar
design. Important is the LinkItem, which is used to transmit a command to
OPUS as text. In this case it is either TAKE_REFERENCE or
MEASURE_SAMPLE. Both commands expect the name of an OPUS experi-
ment file, which defines the type of experiment.
7–2 OPUS-NT Programming Bruker Optik GmbH

A Basic Program with DDE Communication Capability
Private Sub Reference_Click()
On Error GoTo requestErr

ddeLink.LinkItem = "TAKE_REFERENCE xxx.xpm"
Exit Sub

requestErr:
ddeLink = Err.Description
Exit Sub
End Sub

Private Sub Sample_Click()
On Error GoTo requestErr

ddeLink.LinkItem = "MEASURE_SAMPLE xxx.xpm"
Exit Sub

requestErr:
ddeLink = Err.Description
Exit Sub
End Sub

7.1.3 Notification and Result

The LinkNotify routine is called as soon as OPUS has processed the com-
mand and supplies the result.

The LinkRequest call instructs OPUS to transfer the result to the ddeLink
object. Here, the result will only be displayed in the text box. This would also
be the handle for a data processing routine.

If a sample measurement has been started, the spectrum will be sent in the form
of a data point table.

Private Sub ddeLink_LinkNotify()
On Error GoTo requestErr
ddeLink.LinkRequest
Exit Sub
End Sub

7.1.4 Error Handling

OnErrorGoto has already been used in the routines described above. If the
connection should terminate or if an error occurs, the sub routines for the
respective events is called. In our example, the messages will only be dis-
played.

Private Sub ddeLink_LinkClose()
ddeLink = "Connection closed"
connected = 0
End Sub
Bruker Optik GmbH OPUS-NT Programming 7–3

Writing External Programs
Private Sub ddeLink_LinkError(LinkErr As Integer)
Select Case LinkErr
 Case 1
 ddeLink = "Data in wrong format."
 Case 11
 ddeLink = "Out of memory for DDE."
End Select
End Sub

7.1.5 Program Termination

Upon termination, the form will be unloaded; in our example the unload func-
tion also illustrates the possibility to close OPUS.

Private Sub Exit_Click()
Unload Form1
End Sub

Private Sub Form_Unload(cancel As Integer)
On Error GoTo requestErr

ddeLink.LinkExecute "CLOSE_OPUS"
Exit Sub

requestErr:
ddeLink = Err.Description
Exit Sub
End Sub

7.2 A C Program Using the Pipe Interface

The ability of OPUS to function as a server can be used by client software to
exchange data and parameters or to control macros. One route to exchange data
is the use of a Named Pipe, which is a dedicated operation system function for
data transfer. The advantage in using a Named Pipe is the fact, that the pipe can
be treated like any file system object. Pipes can be opened, closed, read from,
and written to similar to files on a hard drive. These functions are embedded in
almost any programming language (C: fopen and fclose, Basic and Fortran:
open and close).

Furthermore, Named Pipes are supported by several network operating systems
(like Novell, LAN Server, Windows for Workgroups, Windows NT and OS/2
Warp Connect). In principle, such a client program is able to run on a LAN
machine, even if an operating system other than Windows NT is running.

The following program exists also in a similar version for OS/2; a comparison
of both versions outlines the Windows NT specific items.
7–4 OPUS-NT Programming Bruker Optik GmbH

A C Program Using the Pipe Interface
7.2.6 Establishing a Connection

Besides the declaration of variables, the first part of the program mainly serves
to establish a Named Pipe connection. First, the name of the Pipe is determined.
OPUS opens a Pipe with the name of the program that was launched. This
name can be accessed as argv[0] and will be added to \.\\PIPE\.

Then a loop tries repeatedly to open the Pipe, using the fopen command. If a
connection could not be established, the loop will be terminated after a pre-
defined amount of time and the program stops.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>

int main(int argc, char **argv){
float *data;
FILE *opuspipe;
char buffer[255];
char filename[255];
char blocktyp[255];
char pipename[255];
char *progname;
long i, numofpoints, entrynum;
double freqfirstp, freqlastp, scalef;
time_t starttime;

avail=0;

strcpy(pipename, "\\\\.\\PIPE\\");
progname=argv[0]; /* Remove Path */
if (strchr(progname,’:’))
 progname=strchr(progname,’:’)+1;
while (strchr(progname,’\\’))
 progname=strchr(progname,’\\’)+1;
strncat(pipename,progname,255);

starttime=time(NULL);i=0;
while(difftime(time(NULL),starttime)<timeout){
 i++; /* num of tries */
 errno=0;
 if ((opuspipe = fopen(pipename, "rb+")) != NULL)
 break;}
if(difftime(time(NULL),starttime)>=timeout)
 cserror("Timeout - Pipe Open \n");

7.2.7 Client/Server Commands

In the next section of the program, a set of commands is processed, following
always the same routine. Before a command is processed, the Pipe is reset
Bruker Optik GmbH OPUS-NT Programming 7–5

Writing External Programs
using the fseek command. Then fprint writes the command to be transmit-
ted to the Pipe, which is sent immediately by the fflush command. Fwait-
gets transfers the results line by line and also performs an error check.

The program expects a spectrum file indicated on the Select Program page
of the External Program function, which will be read by the
READ_FROM_ENTRY command. DATA_VALUES sets the appropriate
mode, and READ_DATA reads the spectral data.

The data will be stored in an array of a size depending on the number of data
points.

entrynum =1; /* The first file selected in the C/S
box*/
fseek(opuspipe,0,SEEK_SET);
fprintf(opuspipe,"READ_FROM_ENTRY %d\n",entrynum);
fflush(opuspipe);
fwaitgets(buffer, 255, opuspipe);
if (strcmp(buffer,"OK\n"))
 cserror(buffer); /* C/S sent an error code */

fwaitgets(filename, 255, opuspipe);
fwaitgets(buffer, 255, opuspipe);/* contains file num-
ber */
fwaitgets(blocktyp, 255, opuspipe);

fseek(opuspipe,0,SEEK_SET);
fprintf(opuspipe,"DATA_VALUES\n");
fflush(opuspipe);
fwaitgets(buffer, 255, opuspipe);
if (strcmp(buffer,"OK\n"))
 cserror(buffer);

fseek(opuspipe,0,SEEK_SET);
fprintf(opuspipe,"READ_DATA\n");
fflush(opuspipe);
fwaitgets(buffer, 255, opuspipe);
if (strcmp(buffer,"OK\n"))
 cserror(buffer);

fwaitgets(buffer, 255, opuspipe);
sscanf(buffer,"%ld",&numofpoints);
fwaitgets(buffer, 255, opuspipe);
sscanf(buffer,"%lf",&freqfirstp);
fwaitgets(buffer, 255, opuspipe);
sscanf(buffer,"%lf",&freqlastp);
fwaitgets(buffer, 255, opuspipe);
sscanf(buffer,"%lf",&scalef);

if ((data=(float*)malloc(numofpoints*sizeof(float)))
==NULL)

 cserror("Out of memory\n");
7–6 OPUS-NT Programming Bruker Optik GmbH

A C Program Using the Pipe Interface
for (i = 0; i < numofpoints; i++){/*receive the data */
 fwaitgets(buffer, 255, opuspipe);
 sscanf(buffer,"%f",&data[i]);
 data[i] *= (float)scalef;}
fwaitgets(buffer, 255, opuspipe);
if (strcmp(buffer,"OK\n"))
 cserror(buffer);

7.2.8 Data Manipulation

After all data has been read from the OPUS file it is available for processing by
the program. In our example the data will only be mutliplied by 2. After the
data processing, all data will be written back to the same file. The PRESERVE
mode which existed in OS/2, is now obsolete due to the different approach of
Windows NT not to manipulate original data.

WRITE_TO_FILE/BLOCK specifies the block type of the target file and
WRITE_DATA initiates the write process. Because the spectral data file has
been altered by the program, it will be labelled "processed" in the OPUS user
interface; if the file was displayed, the display will be refreshed.

/* manipulate the data */
for (i = 0; i < numofpoints; i++)
 data[i]*= 2.0;

/* Now Write it Back */
fseek(opuspipe,0,SEEK_SET);
fprintf(opuspipe,"PRESERVE\n"); /* will increment
extension */
fflush(opuspipe);
fwaitgets(buffer, 255, opuspipe);
if (strcmp(buffer,"OK\n"))
 cserror(buffer);

fseek(opuspipe,0,SEEK_SET);
fprintf(opuspipe,"WRITE_TO_FILE %s",filename);/* file-
name contains end of line char !*/
fflush(opuspipe);
fwaitgets(buffer, 255, opuspipe);
if (strcmp(buffer,"OK\n"))
 cserror(buffer);

fwaitgets(buffer, 255, opuspipe);/* contains path +
filename */
fwaitgets(buffer, 255, opuspipe);/* contain fileno */

fseek(opuspipe,0,SEEK_SET);
fprintf(opuspipe,"WRITE_TO_BLOCK %s", blocktyp);/*
blocktyp contains end of line char !*/
fflush(opuspipe);
fwaitgets(buffer, 255, opuspipe);
if (strcmp(buffer,"OK\n"))
 cserror(buffer);
Bruker Optik GmbH OPUS-NT Programming 7–7

Writing External Programs
fseek(opuspipe,0,SEEK_SET);
fprintf(opuspipe,"WRITE_DATA\n");
fflush(opuspipe);
fwaitgets(buffer, 255, opuspipe);
if (strcmp(buffer,"OK\n"))
 cserror(buffer);

fseek(opuspipe,0,SEEK_SET);
fprintf(opuspipe,"%ld\n",numofpoints);
fprintf(opuspipe,"%lf\n",freqfirstp);
fprintf(opuspipe,"%lf\n",freqlastp);
fprintf(opuspipe,"%lf\n",scalef);
fflush(opuspipe);

for (i = 0; i < numofpoints; i++){
 fprintf(opuspipe,"%f\n",data[i]); }

fflush(opuspipe);
fwaitgets(buffer, 255, opuspipe);
if (strcmp(buffer,"OK\n"))
 cserror(buffer);
free(data);
fclose(opuspipe);

return (0); }

7.2.9 Reading Data from the Pipe

The program uses fwaitgets to read a line of data. However, this can pose a
problem, if the complete data set is not yet available or if not all characters have
been transferred. Especially a data request happening too early could cause the
program to hang, regardless whether the data is being written to the pipe on the
server side.

In this aspect the following code is more robust, but requires the use of Win-
dows NT system calls. Because a Pipe is opened similar to a file, a variable of
type FILE is used in C to access the Pipe. However, API functions use a sys-
tem-specific handle instead of this type. First of all, one has to find out the han-
dle of the FILE variable. The API function PeekNamedPipe checks if the data
is already available. If so, getc is used to read the data; otherwise, the routine
times out.

#include <windows.h>
typedef struct {
 long osfhnd; /* underlying OS file HANDLE */
 char osfile; /* attributes of file (e.g.,
open in text mode?) */
 char pipech; /* one char buffer for handles
opened on pipes */
#if defined (_MT)
 int lockinitflag;
 CRITICAL_SECTION lock;
7–8 OPUS-NT Programming Bruker Optik GmbH

A C Program Using the Pipe Interface
#endif /* defined (_MT) */
 } ioinfo;
extern _CRTIMP ioinfo * __pioinfo[];
#define IOINFO_L2E 5
#define IOINFO_ARRAY_ELTS (1 << IOINFO_L2E)
#define _pioinfo(i) (__pioinfo[i >> IOINFO_L2E] + (i
& (IOINFO_ARRAY_ELTS - \
 1)))
#define _osfhnd(i) (_pioinfo(i)->osfhnd)
#define _fileno(_stream) ((_stream)->_file)

#define timeout 200.0

static int avail;

void cserror(char *errortext)
{
fprintf(stderr, errortext);
fflush(stderr);
exit(3);
}

char *fwaitgets(char *buf, size_t n, FILE *opuspipe){

size_t i, j;
time_t startzeit;

j=0;
startzeit=time(NULL);
for (i=0;i<n;i++){

if (avail= =0){
do{
if

(!PeekNamedPipe((HANDLE)_osfhnd(_fileno(opuspipe)),
0,0,0,&avail,0)){

LPVOID lpMsgBuf;
FormatMessage(
FORMAT_MESSAGE_ALLOCATE_BUFFER |

FORMAT_MESSAGE_FROM_SYSTEM,
NULL,GetLastError(), MAKELANGID

(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language
(LPTSTR) &lpMsgBuf,0, NULL);
strcpy(buf,lpMsgBuf);
LocalFree(lpMsgBuf);
return (buf);}}
while ((avail==0)&&(difftime(time(NULL),
startzeit)<timeout));
if(difftime(time(NULL),startzeit)>=
timeout){
strcpy(buf,"Timeout\n");
return buf;}
else{
buf[i] = fgetc(opuspipe);
avail--;
Bruker Optik GmbH OPUS-NT Programming 7–9

Writing External Programs
startzeit=time(NULL);}}
else{
buf[i] = fgetc(opuspipe);
avail--;
startzeit=time(NULL);}
if (buf[i]==’\n’){
i++;
break;}

}
buf[i]=0;

return (buf);}

7.2.10 Changes compared to OPUS-OS/2

The last example already pointed out some changes to programs running on
OS/2:

• Changes in the Pipe name

• the use of fseek, when switching between read and write

• checking for data with the PeekNamedPipe function

• changes in the handling of modified data files

• error messages have changed slightly and are no longer language-
specific.

7.2.11 Miscellaneous

A specific Program Pipe will be created every time an external program is
launched from the OPUS user interface with the option Run as OPUS task set.
If this option was not chosen and the program was started using a Pipe, OPUS
opens a general Server Pipe named "\\.\PIPE\OPUS" and waits for the external
program to connect (this is the reason the OPUS Pipe function has to be started
first). After the external program has connected to the Pipe, the connection is of
the same quality as a Program Pipe. This type of connection can be used to
remote-control OPUS.

To avoid conflicts between several programs running at the same time, OPUS
uses the program name as Pipe name.

Note: If you rename the program, the Pipe name will also change!

Identifying the Pipe name during the run time of your program (using a system
function) therefore ensures higher stability.

If Pipe was selected as communication method, OPUS expects your program
to open the Pipe; otherwise an error message will be the result. OPUS closes
the Pipe as soon as your program terminates the connection (end of program or
connection failure).
7–10 OPUS-NT Programming Bruker Optik GmbH

A C Program Using the Pipe Interface
It is not recommended to open several Pipes by the same program, for example
by starting the same program more than once. The result would be several
Pipes with the same name.

In principle, a connection via a network is possible. In this case, the computers
network name has to be used instead of the decimal in the Pipe name:

\\OPUSPC\PIPE\OPUS

would be the Pipe name of OPUS server on the computer OPUSPC.

READ_DATA and WRITE_DATA in binary mode remain the only commands
that send binary data and do not use text with an End of Line sequence.

If a command received by OPUS is recognized, OK will be returned and the
command will be processed (often causing additional data exchange). If the
command is not recognized by OPUS (or if arguments are missing), an error
message will be returned and OPUS waits for a new command. This is the rea-
son why, after sending a command to the Pipe, the external program should
always read a line from the Pipe to ensure that the command has been pro-
cessed. Certain commands will cause more text to be returned, that also has to
be read.
Bruker Optik GmbH OPUS-NT Programming 7–11

Writing External Programs
7–12 OPUS-NT Programming Bruker Optik GmbH

VisualBasic Script
8 Creating Scripts

In this section you will learn more about the OPUS Scripting Editor. All of the
examples discussed in this chapter are included on the OPUS CD. The scripts
are written in VBScript and show how to call OPUS functions, start a measure-
ment, access spreadsheets and OPUS data files or how to work with timers and
DDE communication. Make sure you are granted the right to work with Visual-
Basic scripts (see User Settings dialog).

8.1 VisualBasic Script

A script always consists of a form and program code. The form and the control
elements are configurable and are associated to program routines. The first
example (first.obs) shows how to process a data file and assign a button to this
routine.

8.1.1 Generating Forms and Buttons

Open the Scripting Editor as described in chapter 1.3.3. Click on the button
icon of the Toolbox to activate the CommandButton function. Hold down the
left mouse key on the form and move the mouse to create a rectangle for the
button you want to include. Upon releasing the mouse key, the button will be
inserted at this position. You can reposition it by left-clicking on it and moving
the mouse; to resize the button, click on the small squares on its border.

If you right-click on the button, you open a pop-up menu through which you can
access the Properties dialog of the button. Through this dialog, the properties
like color and font of the control element can be changed. Enter the text which
you would like to be displayed on the button in the Caption field. Pressing
Apply confirms these changes.
Bruker Optik GmbH OPUS-NT Programming 8–1

Creating Scripts
8.1.2 Objects and Events

In the next step a sub routine will be linked to an event of the button you have

just created. Switch to the code window by clicking on the icon. You will
be presented with an empty work space and two drop-down lists. The left list
already contains available objects including the entry CommandButton 1.

Figure 56: Creating a Button

Figure 57: Scripting Editor – Object List
8–2 OPUS-NT Programming Bruker Optik GmbH

VisualBasic Script
From the Event list on the right side you can choose the events associated with
the button. Select the event you want to assign to a sub routine An event rou-
tine code will be included (here the routine for the event click, representing a
mouse click). A comment in the code indicates, were you have to include addi-
tional statements.

The routines to be performed upon this mouse click are to be called by the event
routine click. In case OPUS is to process a file, the OpusCommand function
is to be used, that forwards the text commands to OPUS:

Sub CommandButton1_Click
 Form.OpusCommand("Baseline

([""E:\opus\data\abboe05.0""],{})")
End Sub

Note the double hyphenation within the command. This is caused by the fact,
that the file name has to be enclosed in hyphens, but the script also uses hyphens
to indicate text.

Now start the program by clicking on ; the form will be displayed, and the
Go button is active. If you click on it, OPUS will perform a baseline correction.
If no data file has been loaded so far, OPUS loads the file automatically. Switch

back to the editing mode by clicking on . Save your work under any name
but with the extension .obs (OPUS Basic Script), using the Save command in
the File menu.

The user right to modify scripts can be assigned in the User Settings dialog; if
this right was not granted, the user is able to only run the script and is able to
perform only the actions defined by the script.

Figure 58: Scripting Editor – Program Routine of the Event Click
Bruker Optik GmbH OPUS-NT Programming 8–3

Creating Scripts
8.1.3 OPUS Functions

Any OPUS function can be included in a text as shown in the example above.
Because of the complexity of the functions and function arguments, a shortcut
exists to define OPUS functions in a script.

Position the cursor in the section of the code, where you wish to include the
function; then simply start the function from the OPUS tool bar of the user
interface. A dialog differing slightly from the regular one will be displayed.
Instead of the usual file selection box, you see an entry field, in which you can
enter the file parameter to be used in the script. Clicking on Correct will result
in the insertion of the OPUS function into the script.

All parameters of the OPUS function can be defined as usual on the dialog
pages. They will be translated to code and appear in the script.

8.1.4 Performing Measurements

The graphical user interface generated by the Basic program in chapter 4.1 can
also be generated in a script. Create three buttons and label them Reference,
Measure and Cancel, as well as a text box for text output.

Set the parameter MultiLine of the text box Properties to true, to ensure,
that long text output will be written line by line. The part of the Basic program,
which handles the DDE communication can be omitted in the script. The script
is terminated with the function Close:

Sub CommandButton1_Click
 Form.OpusCommand("TAKE_REFERENCE xxx.xpm")
End Sub

Figure 59: Including an OPUS Function
8–4 OPUS-NT Programming Bruker Optik GmbH

VisualBasic Script
Sub CommandButton2_Click
 Form.OpusCommand("MEASURE_SAMPLE xxx.xpm")
End Sub

Sub CommandButton3_Click
 Form.Close
End Sub

Sub Form_OnOpusResult(ByVal strResult , ByVal
m_strResult2 , ByVal m_strResult3 , ByVal m_binData)

TextBox4.Text = strResult + m_strResult2 +
m_strResult3

End Sub

The script makes use of another form function: if a command is processed, the
function OnOpusResult will be called, which is an element the form. The result
of the OPUS command will be forwarded to this routine and in this example
will be written as text to the text box. In case of a terminated measurement this
could look like:

The resulting data file consists of a header, comprising the file name, a number,
the data block type, and the x and y axis units and the data points.

8.1.5 Accessing Spreadsheets

The following example illustrates how OPUS data can be exported to an Excel
spreadsheet. The Excel program must be installed on your computer. The pro-
gram is started by the script with the CreateObject("Excel.Sheet") call;
the following command activates the program, which so far is running as a
background task, and Cells addresses the Excel table cells.

Figure 60: Text Box Messen.obs
Bruker Optik GmbH OPUS-NT Programming 8–5

Creating Scripts
Dim ExcelSheet
Sub CommandButton1_Click
 Set ExcelSheet = CreateObject("Excel.Sheet")
 ExcelSheet.Application.Visible = true
 ExcelSheet.ActiveSheet.Cells(1,1).Value = "Hello
 World"
End Sub

Further information about which objects and functions (e.g. in Word) are acces-
sible in this way, can be found in the documentation of the Microsoft Office
package.

8.1.6 Repeated Calls Using a Timer

A timer object is used to control timed events. While the timer is not visible
during run time, it triggers events after a preset amount of time has elapsed.
The timer object is placed in the form and the time interval is set in millisec-
onds.

In the following example, the graphic output of the Infometrix software InStep
will be called repeatedly. This also demonstrates how to use the External Pro-
gram function to establish a DDE connection. Because DDE communication is
not supported in scripts, the OPUS function is used in its text command form.

The file ddetest.obs can be found on your OPUS CD; to use the script, you need
the InStep software and you have to adjust the path to reflect your environment.
The form consists of two buttons to start and stop the repeated addition of data.

Dim command
Sub CommandButton1_Click
 command =1
 Form.OpusCommand("ExternalPro-
gram(0,{XPR=F:\instep\instep.exe, XST=2, XCW=0,
DDE=0})")
End Sub

Sub Timer1_Timer
 command=2
 Form.OpusCommand("ExternalProgram(0,{XST=3, DDE=1,
DDS=INSTEP, DDT=DATA, DDI=MacroFile,
DDD=""f:\instep\examples\plat.stp""})")
End Sub

Sub CommandButton2_Click
 Timer1.Interval=0
End Sub

Sub Form_OnOpusResult(ByVal strResult , ByVal
m_strResult2 , ByVal m_strResult3 , ByVal m_binData)
 if command =1 then
 Form.OpusCommand("ExternalProgram(0,{XST=3,
DDE=1, DDS=INSTEP, DDT=DATA, DDI=DataFile,
8–6 OPUS-NT Programming Bruker Optik GmbH

VisualBasic Script
DDD=""f:\instep\examples\gasoline.dat""})")
 Timer1.Interval = 10000
 command =3
 end if
 if command =2 then
 Form.OpusCommand("ExternalProgram(0,{XST=3,
DDE=1, DDS=INSTEP, DDT=DATA, DDI=Run, DDD="" ""})")
 command =4
 end if
End Sub

GO (CommandButton1) starts the program (XPR = program name, XST = 2
stands for starting up), and the command DataFile (DDI) is forwarded to the
InStep server, using the OnOpusResult routine with the topic (DDT) DATA.
This is done by a XTYP_POKE call (DDE = 1), which uses the method name as
a parameter (DDD).

The global variable Command indicates, which command was terminated when
OnOpusResult is call. The function Timer1_Timer is called every 10 sec-
onds and forwards the name of a macro to be executed (DDI = MacroFile). The
InStep macro is started with the DDI = Run command.

Although this example is designed specifically to be used with InStep software,
it points out the possibilities of the DDE functionality, and can easily be adapted
to other software.

8.1.7 Accessing Spectral Data

Often it is desirable to manipulate OPUS data with the help of self-designed
programs. One possibility how to achieve this was shown in chapter 3. The
script RWCSTEST.obs basically makes use of the same command routine as
the C program in chapter 3.

Here, another function (OpusRequest) of the form is used to call OPUS, which
directly returns the result as text. The form consists of a text field for data file
name entry, another text field for text output, and a button to start the program.

Initially, the transfer mode is set to allow binary data exchange of type float
(BINARY, FLOAT_MODE, FLOATCONV_MODE). Then, the file name and
the desired data block is specified using the commands READ_FROM_FILE
and READ_FROM_BLOCK. Now, the READ_DATA call to OPUS requires
an additional argument to function as a data field. This is the task of the
OpusRequestData function.

The additional parameter is a Basic array Data, that contains the spectral data
upon return. The data field is adjusted automatically to the size of the data
block. Therefore, UBound can be applied to find the number of transferred
data points.
Bruker Optik GmbH OPUS-NT Programming 8–7

Creating Scripts
Dim data(10000)
Sub CommandButton1_Click
result= Form.OpusRequest("BINARY")
TextBox2.Text= result
result1= Form.OpusRequest("FLOAT_MODE")
TextBox2.Text= TextBox2.Text+ result1
result2= Form.OpusRequest("FLOATCONV_MODE ON")
TextBox2.Text= TextBox2.Text+ result2
result3= Form.OpusRequest("READ_FROM_FILE
"+TextBox1.Text)
TextBox2.Text= TextBox2.Text+ result3
result4= Form.OpusRequest("READ_FROM_BLOCK AB")
TextBox2.Text= TextBox2.Text +result4
result5 = Form.OpusRequest("DATA_POINTS")
TextBox2.Text= TextBox2.Text+result5
result6 = Form.OpusRequestData("READ_DATA",data)
TextBox2.Text= TextBox2.Text+result6

for i = 1 to UBound(data)
 data(i)= 2*data(i)
 next

After data modification, WRITE_DATA writes it back to the file; this shows,
that the process of writing data can be split into several commands.

result7 = Form.OpusRequest("WRITE_TO_FILE
"+TextBox1.Text)
TextBox2.Text= TextBox2.Text+result7
result8 = Form.OpusRequest("WRITE_TO_BLOCK AB")
TextBox2.Text= TextBox2.Text+result8
result9 = Form.OpusRequest("WRITE_DATA")
TextBox2.Text= TextBox2.Text+result9
result10 = Form.OpusRequest-
Data(CStr(UBound(data))+chr(10)+"1"+chr(10)+
CStr(UBound(data))+chr(10),data)
TextBox2.Text= TextBox2.Text+result10

The rest of the script demonstrates, how to access a report block; for this pur-
pose, PeakPick is employed to create a peak table in report format.
REPORT_INFO, HEADER_INFO and MATRIX_INFO determine the dimen-
sions of the report, header and matrix, respectively. The actual elements of the
report are addressed using HEADER_ELEMENT and MATRIX_ELEMENT.

Result13 = Form.OpusRequest("COMMAND_LINE PeakPick
(["""+TextBox1.Text+""":AB], {NSP=9, PSM=1, WHR=0,
LXP=400.000000, FXP=4000.000000, QP8=’NO’,
QP9=0.200000, PTR=20.000000, QP4=’NO’, QP7=0.800000,
QP6=’NO’, QP5=80.000000, PPM=1, QP0=’NO’, QP3=4});")
TextBox2.Text= TextBox2.Text+result13
result14= Form.OpusRequest("READ_FROM_BLOCK AB/Peak")
TextBox2.Text= TextBox2.Text +result14
result15= Form.OpusRequest("REPORT_INFO")
TextBox2.Text= TextBox2.Text +result15
8–8 OPUS-NT Programming Bruker Optik GmbH

JavaScript
result16= Form.OpusRequest("HEADER_INFO")
TextBox2.Text= TextBox2.Text +result16
result17= Form.OpusRequest("MATRIX_INFO")
TextBox2.Text= TextBox2.Text +result17
result18= Form.OpusRequest("MATRIX_ELEMENT 1 0 1 1")
TextBox2.Text= TextBox2.Text +result18
result19= Form.OpusRequest("HEADER_ELEMENT 1 0 1")
TextBox2.Text= TextBox2.Text +result19
End Sub

Sub Form_OnLoad
 TextBox1.Text = "E:\opus\data\abboe05.0"
End Sub

8.2 JavaScript

Although the Scripting Editor was intended for writing VisualBasic scripts, it
can be used as well to generate Java scripts. Therefore, the parameter
ActiveEngine of the forms Properties dialog has to be set to JScript.

Writing Java scripts works the same way as writing VisualBasic scripts, you
just have to take into account the specific Java commands. The procedures for
calling OPUS functions from within a form are identical. The declaration of
functions is slightly different, as you can see from a comparison of the follow-
ing code (JSCRIP1.OBS).

Java:

function CommandButton1::Click()
{
Form.OpusCommand("NEW_WINDOW 0")
}

VisualBasic:

Sub CommandButton1_Click
Form.OpusCommand("NEW_WINDOW 0")
End Sub
Bruker Optik GmbH OPUS-NT Programming 8–9

Creating Scripts
8–10 OPUS-NT Programming Bruker Optik GmbH

VARIABLES Section
9 Macro Command Reference

This chapter describes all special macro commands. The commands are classi-
fied by functionality. You will find an alphabetically sorted list of all com-
mands in section 9.4.

An OPUS Macro consists of three sections, each of which must be present in a
macro, even if the sections are empty. Every section begins with its own
header:

VARIABLES SECTION
PROGRAM SECTION
PARAMETER SECTION

9.1 VARIABLES Section

This section is reserved for the variable declaration in a macro. Only one dec-
laration per line is allowed. Each line must be terminated by a semicolon. Vari-
ables can be of different type. The syntax of the declaration depends on the
variable type and is explained in the following sections. STRING, NUMERIC
and BOOL and FILE variables can hold a single value as well as an array of val-
ues.

General Syntax:

Type <Name> = Value;

Typekeyword for the variable type.

<Name>variable name.

Valueinitial value of the variable.

Variable values can be changed while running a macro in different ways:

• by entering a new value in a user dialog box.

• by calculating a new value using an expression.

• by reading a value from a parameter of a spectrum.

• by reading a value from an info block.

• by reading a value from a report.

• by assigning a value using a macro command.
Bruker Optik GmbH OPUS-NT Programming 9–1

Macro Command Reference
For array type variables the following additional possibilities exist:

• read a text file (each line is one array element).

• scan a directory (each file name is one array element).

• read the parameter values for some of the measurement parameters.

It is possible to assign a value for an array element without initializing the array
elements prior to the selected element. All array elements with lower indices
will then be initialized with default values (0 for NUMERIC, BOOL and empty
strings for STRING type variables).

Example:

<Var>[3] = 123;

if this is the first assignment for this variable the elements 0, 1 and 2 will be
automatically set to 0.

Usually, the initial value of a variable is declared in the VARIABLES section
and will be used whenever a macro is started. Some applications require to
revoke any changes made to a variable during the last macro run. This can be
achieved by marking the variable.

9.1.1 Variable Types

Five different variable types exist:

STRING for any string.
NUMERIC for numerical values, double-precision.
BOOL can have the values TRUE or FALSE.
FILE represents a file for processing functions.
BUTTON command button used for flow control in user dialog boxes*.

* This variables cannot be used as array variable.

9.1.2 Variable Declaration for STRING, NUMERIC and
BOOL

The variables must be declared according to the following syntax:

Type <Name>; declares and initializes a variable with the default
values (Numeric = 0, String = empty,
Bool = FALSE).

Type <Name> = Value; declares and initializes a variable with a value.

Type <Name> = ’Value’;

Note: string values must be enclosed by single quotes.
9–2 OPUS-NT Programming Bruker Optik GmbH

VARIABLES Section
Type is the keyword to specify the variable type.

Name is the unique variable name.

Value is the start value for the variable.

Examples:

NUMERIC <Index>; The numeric variable <Index> will be
initialized with a value of zero.

NUMERIC <Loop Count> = 10; Blanks are allowed in variable names;
LoopCount is set to “10”.

STRING <Title>; The string variable <Title> is initialized
as empty string.

STRING <Path> = ’d:\data’;Do not forget to use single quotes for string
variable values.

BOOL <Plot?> = TRUE; BOOL types are used for making deci-
sions in a macro.

Note: The declaration stays the same for variables used as an array type but the
array values must be set within the PROGRAM section.

Usage of variables: Simply use the name of the variable enclosed in brackets
< >.

9.1.3 Variable Declaration for FILE

The declaration of file variables is almost identical to the other variables.
Required data blocks can be specified by assigning them to the variable name.

FILE <Name> = Block1, Block2, ...; declares a file variable with different
data blocks.

Name is the name of the file variable.

Block n is the name of the data block.

Examples:

FILE <Input File>; declares the file variable “Input
File” without specifying a data
block.

FILE <Input File> = AB; declares the file variable “Input
File” with a single absorbance-
block block.
Bruker Optik GmbH OPUS-NT Programming 9–3

Macro Command Reference
FILE <Input File> = AB, AB/Peak; declares the file variable “Input
File” with at least one absor-
bance block and a peak table of
this block.

A file expression is enclosed in square brackets and consists of the variable
name, a colon and the block type.

Example:

Print ([<Input File>:AB/Peak]); this is how the file variable is
used in a command.

9.1.4 Variable Declaration for BUTTON

The use of a BUTTON variable is restricted to user dialog boxes. It is used to
jump to a predefined label in the macro when the button is clicked. The declara-
tion therefore requires a Goto statement to a label i. e. the line indicator for the
jump.

BUTTON <Name> = Goto (Label); declares a button variable with its
jump label.

Name is the variable name and at the same
time the text displayed on the button
in the dialog.

Label is the line where the macro execution
continues.

Note: Neither the name of the button nor the label for the jump can be changed
while executing the macro.

Example:

BUTTON <Plot> = Goto (Plot Spectrum);

9.1.5 Marking a Variable for Update

Values assigned in the variables section are the initial values whenever a macro
is started.

Some cases require, that the variables changed during a run are stored as new
initial values for the next run of the macro. You can do this by marking a vari-
able by a preceding “*”. After executing a macro or by using the macro com-
mand “SaveVars”, all marked variables are updated to keep their last value.
Only variables of type STRING, NUMERIC and BOOL can be marked.
9–4 OPUS-NT Programming Bruker Optik GmbH

VARIABLES Section
Example:

*STRING <Text 1> = ’Initial Text’;this variable
.......

<Text 1> = ’New Text’; will be updated to ’New Text’
 *STRING <Text 1> = ’New Text’; and after running the macro, the

above line will read.

9.1.6 Special Characters

Some characters in the macro system are used as control characters in command
lines (e.g. {}[]). With two exceptions these characters can be used as all other
characters as long as the text is enclosed in single quotes (e.g. ‘123 [g]’).

Exceptions:

Smaller/greater sign “<” and “>” (are used to mark variables)

Single quotes (are used to enclose strings)

To uses these characters within a text line simply enter them twice

Example:

To print a text like 123 < 345 enter: ‘123 << 345’
To print a text like Result is '123' enter: ‘result is ‘’123’’’

Square brackets (are used to access array elements)

If used within a text simply type a single character:

To print a text like 123 [g] enter: ‘123 [g]’

In case a variable within a string is followed by square brackets the variable is
interpreted as array index, if the leading bracket immediately follows the vari-
able declaration (<Text>[0]). If a blank is inserted between the end bracket “>”
of the variable and the leading square bracket (<Text> [0]), the bracket is inter-
preted as text!

Example:

Two expressions <Text>[0] = ‘ABC’ and <Text>[1] = ‘XYZ’ result in the fol-
lowing combinations:
‘<Text>[0] and <Text>[1]’ is shown as ABC and XYZ
‘<Text> [0] and <Text> [1]’ is shown as ABC [0] and XYZ [1]
Bruker Optik GmbH OPUS-NT Programming 9–5

Macro Command Reference
9.2 PROGRAM Section

The PROGRAM section is the part of the macro, where command lines are
stated. Command lines can be native OPUS Commands, special macro com-
mands or variable assignments.

9.2.1 General Command Syntax

The PROGRAM section consists of several program lines, terminated by semi-
colons. Each individual line consists of at least three parts:

CommandName (Argument 1, Argument 2,);

CommandName is either a native OPUS command or a special macro
command.

Argument n command arguments; the argument list is enclosed by
brackets and the number of arguments depends on the
command. Even if a command requires no arguments
the brackets have to be present.

Semicolon The command line must be terminated by a semicolon.

Some Commands are used to assign values to variables. These commands are
preceded by the variable name followed by an equals sign.

<Variable> = CommandName (Argument 1, Argument 2,);

<Variable> the name of the variable to be assigned a value. The
variable type depends on the command.

9.2.2 Command Names

Command names can either be native OPUS Commands or special macro com-
mands. The commands are listed and described in detail in this chapter and
chapter 10.

9.2.3 Command Arguments

Command arguments are necessary to forward specific command parameters to
a command. These arguments can be of different type, depending on the pur-
pose of the command:

Text or Numbers

Any text or numbers are forwarded to the command, either as fixed values or as
variables.
9–6 OPUS-NT Programming Bruker Optik GmbH

PARAMETER Section
Keywords

Keywords are specific instructions required for a command. Keywords are
always printed in capital letters, e. g. the time behavior of a message is deter-
mined by the keyword NO_TIMEOUT.

File

A file argument forwards the file, which is to be processed to the command. A
file argument is always enclosed in square brackets and requires the name of the
file variable and (separated by a colon) the name of the data block.

[<variable name>:Blocktype]

Example:

[<Input File>:AB] or [<Result>:AB/Peak]

Parameter List

This argument type is mainly needed for OPUS commands and is required, if
parameters must be changed during macro execution. A parameter list is
enclosed in braces. For each parameter in the list, the three letter parameter
name and the parameter value is separated by an equals sign. The parameter
values can consist of constants or variables. The different parameters are sepa-
rated by commas.

{PA1=Value1, PA2=Value2, PA3=Value3,}

Return Value

Some commands (e.g. the “Measurement” or the “Load” function) return a
value, which has to be assigned to a variable.

These command are preceded by the variable name and an equals sign:

<Variable Name> = Command (Argument 1, Argument2, ...);
[<Variable Name>:Block ID] = Command (Argument 1, Argument2, ...);

9.3 PARAMETER Section

The section marked PARAMETER SECTION contains a list of all necessary
function parameters for the OPUS functions used in a macro, which are not
included in a command line If this list is empty or if parameters are missing,
they will be taken from a default parameter set. Since these parameters can be
changed while working with OPUS, results of macros may be unpredictable.
Bruker Optik GmbH OPUS-NT Programming 9–7

Macro Command Reference
Macros generated automatically by either using the interactive macro editor or
by conversion from OPUS-OS/2 macros, will include all required parameters in
the single command line and an empty PARAMETER SECTION. For macros
written with a text editor, the author is responsible for manually adding a com-
plete parameter set either in the command line or the PARAMETER SECTION.

Syntax:

Name=Value;

Name three letter parameter name.

Value default parameter value.

String values must be enclosed by single quotes.

9.4 Macro Functions Sorted Alphabetically

C

CallMacro run a sub macro
Copy copies one or more files

D

Delete deletes one or more files
DisplaySpectrum shows a spectrum on the screen

E

Else indicates the point to continue processing after an If
statement was FALSE

Endif closes an If statement
EndLoop marks the end of a loop
Expressions use a mathematical expression to assign a value

to a variable

F

FindString searches text within another text
FromReportHeader reads a value from a report header
FromReportMatrix reads a value from a report matrix

G

GetArrayCount retrieves the number of elements in an array
GetEnumList reads possible parameter values of optics parameters
9–8 OPUS-NT Programming Bruker Optik GmbH

Macro Functions Sorted Alphabetically
GetDisplayLimits retrieves the current display limits of the macro display
window

GetLength retrieves the length of a STRING variable
GetMacroPath retrieves the path of the current macro
GetOpusPath retrieves the current OPUS path and assigns it to a string

type variable
GetParameter reads an OPUS parameter from a spectrum file
GetTime gets system date and time
GetUserPath retrieves the current User path and assigns it to a string

type variable
GetVersion returns the current OPUS version
Goto instruction to go to a specified label

I

If checks a logical expression and act depending on the
result

L

Label jump address within a macro
LoadFile loads a data file

M

Message shows a message on screen

O

OpenDisplayWindow opens a new window for all result files

P

PrintToFile writes a line of text into a specified text file

R

ReadTextFile reads the contents of a text file and writes it into an
array variable (type STRING)

Rename renames one or more files

S

SaveVars updates all selected variables
ScanPath searches all selected files within a directory and saves

their names in an array variable (type STRING)
SetDisplayLimits sets the frequency limits in a display window
StartLoop marks the begin of a loop
Bruker Optik GmbH OPUS-NT Programming 9–9

Macro Command Reference
StaticMessage shows a permanent message box during execution of a
macro

T

TextToFile writes a text line to a text file
Timer instruction to achieve time control within a macro

U

UnDisplaySpectrum hides a spectrum
UserDialog shows a user-defined dialog box

9.5 Functions Sorted by Categories

Macro commands are available for the following categories:

System Functions

GetOpusPath retrieves the current OPUS path and assigns it to a string
type variable

GetUserPath retrieves the current user path and assigns it to a string
type variable

GetMacroPath retrieves the path of the current macro
GetVersion returns the current OPUS version
GetArrayCount retrieves the number of elements in an array
GetLength retrieves the length of a STRING variablen
FindString searches text within another text
CallMacro runs a sub macro
SaveVars updates all selected variables

Flow Control Functions

StartLoop marks the begin of a loop
EndLoop marks the end of a loop
Label jump address within a macro
Goto instruction to go to a specified label
If checks a logical expression and act depending on the

result
Else indicates the point to continue processing after an If

statement was FALSE
Endif closes an If statement

User Interface Functions

Message shows a message on screen
9–10 OPUS-NT Programming Bruker Optik GmbH

Functions Sorted by Categories
StaticMessage shows a permanent message box during execution of a
macro

UserDialog shows a user-defined dialog box

Input Functions

Enter Expression uses a mathematical expression for assigning a variable
value

FromReportHeader reads a value from a report header
FromReportMatrix reads a value from a report matrix
GetEnumList reads possible parameter values of optics parameters
GetParameter reads an OPUS parameter from a spectrum file
ReadTextFile reads the contents of a text file and writes it into an

array variable (see alphatbetical list).

Output Functions

PrintToFile writes a line of text into a specified text file
TextToFile writes a text line to a text file

File Functions

Copy copies one or more files
Delete deletes one or more files
Rename renames one or more files
LoadFile loads a data file
ScanPath scans the path for the specified files and writes them

into an array variable (see alphatbetical list).

Time Control Functions

GetTime gets system date and time
Timer instruction to achieve time control within a macro

Display Functions

OpenDisplayWindow opens a new window for all result files
CloseDisplayWindow closes a display window which had been opened with

OpenDisplayWindow
DisplaySpectrum shows a spectrum on screen
UnDisplaySpectrum hides a spectrum
GetDisplayLimits retrieves the current display limits of the macro display

window
SetDisplayLimits sets the display limits for the current macro display

window
SetColor sets the color of the specified spectrum on the display.
Bruker Optik GmbH OPUS-NT Programming 9–11

Macro Command Reference
9.6 System Functions

System Functions are used to access system values, like for example path
names. The following functions are available:

CallMacro runs a sub macro
FindString searches text within another text
GetArrayCount retrieves the number of elements in an array
GetLength retrieves the length of a STRING variable
GetMacroPath retrieves the path of the current macro
GetOpusPath retrieves the current OPUS path and assigns it to a string type

variable
GetUserPath retrieves the current user path and assigns it to a string type

variable
GetVersion returns the current OPUS version
CallMacro runs a sub macro
SaveVars immediately saves the current values of marked variables

9.6.1 GetOpusPath

Retrieves the base path from which OPUS was started. The OPUS version
number is of type YYYYMMDD (e.g. 19990924).

To allow the design of macros that are machine independent, the path of the
OPUS folder can be retrieved at run time and read into a variable. Instead of
using fixed path names in a macro, we recommend using this path variable
instead.

Syntax:

<Variable> = GetOpusPath ();

<Variable> name of the variable to receive the current OPUS path.

The variable must be of the type STRING. The path is returned without back-
slash at the end. If you want to specify a subdirectory of OPUS, you have to
insert the backslash between the variable name and the subdirectory name (e.g.
<OPUS Path>\methods).

9.6.2 GetUserPath

Retrieves the path to the user specific files and folders of the user currently
logged in.

If no user (user name blank at login) is specified, the function acts like the func-
tion GetOpusPath and returns the current OPUS path.
9–12 OPUS-NT Programming Bruker Optik GmbH

System Functions
To allow to write portable macros, the user specific path can be read into a vari-
able. Instead of using fixed path names in a macro, we recommend to use this
path variable instead.

Syntax:

<Variable> = GetUserPath ();

<Variable> name of the variable to receive the current user path.

The variable must be of the type STRING. The path is returned without back-
slash at the end. If you want to specify a subdirectory of your user path, you
have to insert the backslash between the variable name and the subdirectory
name (e.g. <User Path>\data)

9.6.3 GetMacroPath

Retrieves the path to the directory that holds the macro currently running and
saves it in a STRING variable.

Syntax:

<Variable> = GetMacroPath ();

<Variable> name of the variable to receive the current macro path.

This command requires no parameters.

9.6.4 GetVersion

Gets OPUS version number and assigns it to the specified variable.

Syntax:

<Variable> = GetVersion ();

<Variable> variable to receive the OPUS version number.

The variable must be of type STRING.

9.6.5 GetArrayCount

Determines the number of elements of an array variable.

Syntax:

<Variable 1> = GetArrayCount (<Variable 2>);

<Variable 1> numerical variable, to receive the number of array elements.

<Variable 2> name of the array variable.
Bruker Optik GmbH OPUS-NT Programming 9–13

Macro Command Reference
9.6.6 GetLength

Determines the length of a STRING variable and stores it in a variable of type
NUMERICAL.

Syntax:

<Variable 1> = GetLength (‘<Variable 2>’);

<Variable 1> numerical variable, to receive the number length of the string.

<Variable 2> name of the STRING variable.

Example:

STRING <text> = ’Hello world’;
NUMERIC <length> = 0;
<length> = GetLength (‘<text>’);

<length> has the value 11.

9.6.7 FindString

Finds a specified text within a STRING variable and returns the position of the
first character of the search text, starting with zero for the first character of the
STRING variable. The return value can be used directly in a text format com-
mand. If the search text is not found “-1” will be returned.

Syntax:

<Variable 1> = FindString (‘<Variable 2>’, ‘Text’, Option);

<Variable 1> numerical variable, to receive the result of the query.

<Variable 2> name of the STRING variable, which is used as target.

Text string, to be searched.

Option condition applied for the search
CASEcase-sensitive search
NOCASEsearch not case-sensitive

Example:

STRING <text> = ’This is the content of a STRING
variable’;
<Index 2> = FindString (‘<text>’, ’of’, NOCASE);
<Index 1> = FindString (‘<text>’, ’this’, NOCASE);
<Index 2> = <Index 2> - <Index 1>;
<Result> = <[<Index 1>, <Index 2>] text>;
Message (‘<Result>’, ON_SCREEN, NO_TIMEOUT);

<Result> has the value “the content”.
9–14 OPUS-NT Programming Bruker Optik GmbH

System Functions
9.6.8 CallMacro

Function to call a sub macro.

A sub macro is a stand alone macro, which must include a user dialog box. This
user dialog box includes all variables, that will be forwarded from the main
macro to the sub macro. In addition, a user dialog box can be included in a sub
macro as the last command line. This dialog box is used to specify the parame-
ters that will be returned to the main macro. These dialog boxes will not be dis-
played when running the macro.

Syntax:

CallMacro (‘Submacro’, { ‘Variable A1’, ‘Variable A2’, ...}, {‘Variable B1’,
‘Variable B2’,});

Submacropath and name of the macro to be run.

Variable Anvariables passed from the main macro to the sub macro.

Variable Bnvariables returned from the sub macro to the main macro.

The variable lists passed to and returned from a sub macro must be consistent
with the variable types in the user dialog boxes. That is, the number and type of
the variables, as well as their order in the lists and dialogs, must be identical.
Blank lines in the dialog box will be skipped. Only variables of type STRING,
NUMERIC, BOOL and FILE are allowed in these dialog boxes.

Using sub macros has the advantage, that these macros can be tested individu-
ally and called up several times during a macro.

9.6.9 SaveVars

Saves the current values of all selected variables in the macro.

Normally, all selected variables will be saved, if a macro terminates without an
error. However, this is not the case, if a macro stops due to a run time error or a
power failure. To prevent the macro from starting again with the variable start
values e.g. after a power failure, insert this command at the appropriate prosi-
tion; restarting the macro will then cause the macro to continue using the last set
of values before the power failure.

Syntax:

SaveVars ();

This function requires no parameters.
Bruker Optik GmbH OPUS-NT Programming 9–15

Macro Command Reference
9.7 Flow Control Functions

Flow control functions are required, if a macro is not intended to run straight
from the first to the last line. Flow control function allow to include loops, con-
ditional or unconditional jumps and jumps controlled by buttons in user dialog
boxes.

StartLoop marks the begin of a loop
EndLoop marks the end of a loop
Label jump address within a macro
Goto instruction to go to a specified label
If checks a logical expression and act depending on the

result
Else indicates the point to continue processing after an If

statement was FALSE
Endif closes an If statement

9.7.1 StartLoop

Marks the beginning of a loop.

A loop is used to repeat a sequence of macro or OPUS commands. The loop
count, i.e. the number of repetitions of the command sequence, can either be a
constant or a NUMERIC variable. In case that a FILE variable is used, the
counter is automatically set to the number of files selected for this variable.
This allows to write macros, that account for any number of files.

Each loop begins with the StartLoop statement and ends with the EndLoop
statement. Also, each loop is identified by its loop index number. The loop
index number facilitates the correlation of StartLoop and EndLoop statements,
if loops are nested. Nesting of loops is allowed, as long as the beginning and
the end of a nested loop are both within the start and end of the outer loop(s).

Syntax:

StartLoop (LoopCount, LoopIndex);

LoopCount: the loop count can either be a positive number, a numeric vari-
able, or a file variable. If a FILE variable is chosen, the loop
count is determined by the number of selected files.

LoopIndex a running index number, needed to correlate the StartLoop
with the EndLoop.

A loop count of zero or negative value is not allowed.
9–16 OPUS-NT Programming Bruker Optik GmbH

Flow Control Functions
9.7.2 EndLoop

Marks the end of a loop.

For details about loops see “StartLoop”.

Syntax:

EndLoop (LoopIndex);

LoopIndex a running index number, needed to correlate the StartLoop
statement with the EndLoop statement.

9.7.3 Goto

Instruction to jump to a label.

Small macros usually are executed sequentially from the first line to the last
line. The Goto statement adds more flexibility to a macro, especially if the
Goto statement is combined with an If statement. The Goto statement on its
own can be used to implement “endless” loops (at the end of the macro a jump
to a label at the beginning of the macro).

Syntax:

Goto (Label);

Label name of the label to jump to.

9.7.4 Label

A label marks the starting point for a Goto instruction.

The label statement itself does not perform any action. Thus labels can be
placed anywhere within a macro.

Syntax:

Label (Name);

Name is the unique name of the label.

The label name must be unique and may not be used as a variable name at the
same time. Please note, that labels within a loop are only allowed, if the Goto
statement linked to the label (or the user dialog box with the button) is placed
within the same loop.
Bruker Optik GmbH OPUS-NT Programming 9–17

Macro Command Reference
9.7.5 If ... Else ... Endif

Checks a logical expression and executes the sequence of command lines fol-
lowing the If statement, in case the expression is TRUE. If the expression is
FALSE, the command sequence is skipped, until either the Else or Endif state-
ment is encountered. Execution continues at the line following the Else or
Endif statement. The Endif statement is mandatory. If instructions can be
nested.

Syntax:

If (‘Value1’ .Condition. ‘Value2’);

Command Sequence 1

.....

Else ();

Command Sequence 2

.....

Endif ();

or

If (‘Value1’ .Condition. ‘Value2’);

Command Sequence 1

.....

Endif ();

Value1 first value to compare, can be a number, text, bool or the
keyword TIME.

Value2 second value to compare, can be a number, text, bool or
the keyword TIME.

.Condition. logical comparison, the operator is enclosed by decimal
points.

.EQ. equal; to compare strings in an If statement, can be a
number, text or bool.

.GT. greater than; numeric.

.LT. lower than; numeric.
9–18 OPUS-NT Programming Bruker Optik GmbH

Flow Control Functions
.LTEQ. lower than or equal, numeric.

.GTEQ. greater than or equal, numeric.

.NE. not equal, numeric

.NOCASE_PARTOF. part of string, case insensitive.

.CASE_PARTOF. Part of string, case sensitive.

Command Sequence 1 Sequence of command lines executed if the expression
is TRUE.

Else () command marking the end of Command Sequence 1
and the beginning of Command Sequence 2.

Command Sequence 2 Sequence of command lines executed if the expression
is FALSE.

Endif () command marking the end of the If statement, can either
be at the end of the Command Sequence 2 if the key-
word Else is used or at the end of Command Sequence 1
if no Else statement is used.

Note that all three commands, like all other command lines, must be terminated
by semicolons. Also, the Else and Endif commands both require brackets.

The values to be compared can either be specified directly or as variables. The
keyword TIME allows to compare a time (format HH:MM:SS) statement with
the current system time. Set one of the values to the time to be compared to the
system time and use TIME as the second value.

Example 1:

If (<Number 1> .GTEQ. <Number 2>);
Message (’<Number 1> is larger than or equal to <Num-
ber 2>’, ON_SCREEN, NO_TIMEOUT);
Else ();
Message, (’<Number 1> is smaller than <Number 2>’,
ON_SCREEN, NO_TIMEOUT);
Endif ();

Example 2:

If (<Baseline?> .EQ. TRUE);
Baseline ([<File>:AB], {});
Endif ();

Example 3:

If (TIME .GT. 12:00:00);
Message (’It is lunch time’, ON_SCREEN, NO_TIMEOUT);
Endif ();
Bruker Optik GmbH OPUS-NT Programming 9–19

Macro Command Reference
Example 4:

If (...);
....

If (...);
....
Endif (...);

....
Else ();
....

If (...);
....

If (...);
....
Endif ();

....
Else ();
....
Endif ();

....
Endif ();

9.8 User Interface Functions

User interface functions are used to allow the communication between the oper-
ator and the running macro.

Message shows a message on screen
StaticMessage shows a permanent message box during execution of a

macro
UserDialog shows a user-defined dialog box

9.8.1 Message

Shows a message box on screen.

The macro execution stops as long as the message box is shown. A confirma-
tion is required (i.e. a click on the OK button) to continue running the macro. If
required, a timeout value can be specified, to prevent the hang up of the macro.

Syntax:

Message (’Text’, Option, Timeout);

Text the text to be displayed in the message box. The message can
either be text or variables or a combination of both. Note that
the text has to be enclosed in single quotes.

Option keyword for the behavior of the message box.
9–20 OPUS-NT Programming Bruker Optik GmbH

User Interface Functions
ON_SCREEN shows a message on the screen.

ON_PRINTER prints message.

Timeout specifies, how long the message box will be displayed.

NO_TIMOUT message will stay on screen, until the user clicks OK.

x time in seconds, during which the message box stays on the
screen.

The option keywords can be combined if both actions are required
ON_SCREEN | ON_PRINTER.

If a timeout value is specified, the user still can terminate the message by click-
ing on OK, before the specified time is over.

9.8.2 StaticMessage

Shows a permanent message dialog during the execution of a macro.

This dialog will not interrupt the macro execution and does not require any user
confirmation. Up to 14 lines of text can be displayed in the dialog. Depending
on the number of text lines displayed, the box will automatically be resized.

Syntax:

StaticMessage (Option, {’Text1’, ’Text2’,, ’Text14’});

Option keyword for either displaying or hiding the message window.

SHOW shows the window and updates all lines.

HIDE removes the window from the screen; if this
option is set, the other options are not required
(Example: StaticMessage (HIDE, {});).

Text n text for line number n, can be either pure text or variables or a
combination of both. Note that the text has to be enclosed in
single quotes.

9.8.3 UserDialog

Shows a user-defined dialog box.

The dialog box can hold up to 14 lines of text. It is intended to enter or select
files and variables, as well as buttons for immediate execution of Goto state-
ments. The default box has two buttons Continue and AbortMacro at the bot-
tom. These buttons can be hidden.
Bruker Optik GmbH OPUS-NT Programming 9–21

Macro Command Reference
Syntax:

UserDialog (‘Title’, Options, Keyword 1:‘<Variable 1>’,...,
Keyword 14:‘<Variable 14>’);

Title the text shown in the title bar of the dialog box, can be a text
or a variable.

Option options specifying the behavior and appearance of the dialog
box.

0 standard dialog.

NODEFAULTBUTTON do not show the default buttons Continue
and Abort Macro.

Keyword n specifies the type of control shown in line number n. Types
can be:

BLANK empty line.

TEXT a text line showing the text of the specified STRING
variable.

EDIT an edit field for a STRING or NUMERIC variable. The
edit field is preceded by the variable name.

CHECKBOX a check box for a BOOL variable. The check box gets
the variable name.

COMBOBOX a combobox showing the contents of an array type
STRING or NUMERIC variable. The combobox is pre-
ceded by the variable name.

BUTTON a command button which is always connected to a Goto
instruction. If two buttons should be displayed two
variable names separated by a + sign have to be used
(example: BUTTON: <Button1> + <Button2>).

<Variable n>the variable to be used in line number n.

9.9 Input Functions

Input functions change variables or read parameters from a spectrum, an infor-
mation block or a report.
9–22 OPUS-NT Programming Bruker Optik GmbH

Input Functions
Enter Expression uses a mathematical expression for assigning a variable
value

FromReport Header reads a value from a report header
FromReport Matrix reads a value from a report matrix
GetEnumList reads possible parameter values of optics parameters
GetParameter reads an OPUS parameter from a spectrum file
ReadTextFile reads the contents of a text file and writes it into an

array variable

9.9.1 Enter Expression

Any mathematical expression can be used to assign values to a variable.

Syntax:

<Result> = Expression;

<Result> variable receiving the result of the expression.

Expression mathematical expression.

Any mathematical expression can be used here. Values can either be repre-
sented by numbers or NUMERIC variables. Use the mathematical operators in
the same way as a pocket calculator. Use brackets to ensure the correct
sequence when calculating an equation (e.g. ’(2 + 2) * (4 - 2)’).

Use the following case sensitive syntax to access mathematical functions:

SQRT square root
PI the number Pi
LN natural logarithm
LG decimal logarithm
EXP exponent
DXP decimal exponent
sin sine
cos cosine
tan tangens
asin arc sine
acos arc cosine
atan arc tangens
sinh hyperbolic sine
cosh hyperbolic cosine
tanh hyperbolic tangens

You can also assign text to a string variable. In this case, the expression on the
right side of the equals sign must be enclosed in single quotes. Text, variables
or a combination of both can be used.
Bruker Optik GmbH OPUS-NT Programming 9–23

Macro Command Reference
Example:

<DataPath> = ’<OPUS Path>\Data’;

9.9.2 GetParameter

Function to read an OPUS parameter from a spectrum file.

Syntax:

<Variable> = GetParameter ([<File>:BlockID], Parameter);

<Variable> the name of the variable for the parameter value.

<File> name of the file variable.

BlockID name of the data block to read from (see below).

Parameter three letter parameter name of the parameter to be read.

If the data block is of the type spectrum, the parameter is read from the parame-
ter block associated with the specified data block. If the data block is of the
type INFO, one of the info text lines can be read.

The parameter names for INFO blocks are:

Txx = text definition of line xx (xx = 00 - 99)

Ixx = contents of line xx (xx = 00 - 99)

9.9.3 FromReportHeader

Reads a value from a report header.

Syntax:

<Variable 1> = FromReportHeader (File, Report, Subreport, Line, Option);

Variable 1 the name of the variable for the report value.

File file expression of the file variable to read from (report block
 must be specified).

Report report number (default = 1) in the report block.

Subreport subreport number (default = 0, reads from main report).

Line header line to be read, either a constant or a NUMERICAL
variable.
9–24 OPUS-NT Programming Bruker Optik GmbH

Input Functions
Option keyword stating which part of the line to read.

LEFT left part of the header line, usually the title

RIGHT right part of the header line, usually global values
(e.g. number of peaks in a peak table)

9.9.4 FromReportMatrix

Reads a value from a report matrix.

Syntax:

<Variable 1> = FromReportMatrix (File, Report, Subreport, Line, Row);

Variable 1 variable for the return value.

File file expression of the file variable to read from (must be a
report block).

Report report number (default = 1) in the report block.

Subreport subreport number (default = 0 reads from main report) of the
report.

Line number of the column to be read, either a constant or a
NUMERICAL variable.

Row number of the line to be read, either a constant or a NUMERI-
CAL variable.

9.9.5 ReadTextFile

Reads a text file into a variable array. Each line transforms to an array element.

Syntax:

<Variable > = ReadTextFile (‘File’);

Variable variable to hold the text lines as a list.

File file specification, including path, name and extension.

9.9.6 GetEnumList

This function has not been implemented yet.

Gets all enum parameter values and writes them to the array elements of the
specified variable. Parameters of enum type are mainly used for optic parame-
Bruker Optik GmbH OPUS-NT Programming 9–25

Macro Command Reference
ters, which have a predefined set of allowed values. In most cases, these values
depend on the optics type. Typically, they are chosen from a Combobox in a
user dialog.

Syntax:

<Variable> = GetEnumList (Parameter);

<Variable> name of the array variable to receive the list of allowed val-
ues. Each array element is assigned a value.

Parameter name of the enum parameter.

The variable must be of type STRING.

9.10 Output Functions

Output functions are used to print results on a printer, into a text file or into the
print log file. In the current version, only the functions TextToFile and Print-
ToFile are available which write lines of text into a text file. Due to compatibil-
ity reasons, the Print function of OPUS-OS/2 macros is mapped automatically
to the function PrintToFile.

TextToFile writes a text line to a text file
PrintToFile writes a line of text into a specified text file

9.10.1 TextToFile

This function is the standard macro function to write a line of text into a text
file.

Syntax:

TextToFile (‘Path’, ‘File’, ‘Text’, Option);

Path the path of the text file.

Name name of the output file (specify with extension).

Text text line to write into the file.

Option controls how the text is written to the file

APPEND_TEXT the new text will be appended to the existing one.
REPLACE_TEXT the new text will replace the old text; if the file

does not exist, it will be created.
9–26 OPUS-NT Programming Bruker Optik GmbH

File Functions
9.10.2 PrintToFile

This function writes a line of text into a text file.

The syntax is equivalent to an OPUS command, allowing to easily map the
function to the OPUS print function. If the text file does not exist, it will be cre-
ated. If a file already exists, the text line is appended at the end.

Syntax:

PrintToFile (0, {POP=’Path’, POF=’Name’, PTX=’Text’});

0 file list; see comment below.

POP parameter name for output path.

Path the path of the output file.

POF parameter name for output file name.

Name filename of the output file (specify with extension).

PTX parameter name for text line.

Text text line to write into the file.

The values of all three parameter can either be text or variables. The first com-
mand argument is normally the file list, specifying which report shall be
printed. If only a single line of text is printed, this argument is zero. Because
the Print function for reports has not been implemented so far, an argument
which does not equal zero will cause an error message.

9.11 File Functions

File functions are used to access files within macros

LoadFile loads a data file
ScanPath scans the path for the specified files and write them into

an array variable
Copy copies one or more files
Rename renames one or more files
Delete deletes one or more files
Bruker Optik GmbH OPUS-NT Programming 9–27

Macro Command Reference
9.11.1 LoadFile

Function to load one or more data files into OPUS.

Syntax:

<File> = LoadFile (‘Filename’, Option);

<File> name of the file variable for assigning the loaded data file.
The LoadFile function returns the internal file number of the
loaded file.

Filename full path and file name of the file to be loaded, can either be a
text or a STRING variable or a combination of both.

Option option for behavior if a file cannot be loaded (see remark
below).

WARNING shows a dialog box with an error message; this option can be
combined with one of the two following options (e.g.
WARNING | ABORT).

ABORT aborts the macro.

Goto (Label) jumps to the specified label.

If a file could not be loaded, the error condition is TRUE and the FILE variable
is not initialized. Therefore, in general the ABORT option should be used. If
the file needs not to be processed immediately or at all, the Goto option can be
used instead. This gives you the opportunity to use the LoadFile function to
check, whether a file exists or not.

Note: This option was only introduced for reasons of compatibility with OPUS-
OS/2 Macro. We highly recommend to use the IT(MACROERROR, .EQ.,

TRUE); statement for error checking instead.

The LoadFile function can be used to load more than one file at the same time.
You only need to use wildcard characters (*, ?) in the file name. To process all
selected files, a StartLoop statement must follow the LoadFile command line,
which uses the name of the FILE variable as loop count.

Example:

<File> = LoadFile (’D:\OPUS\DATA\SEARCH*.0’, WARN-
ING | ABORT);
StartLoop (<File>, 0);
....
EndLoop,0);

All files beginning with the name SEARCH are loaded and processed in the
loop following the LoadFile instruction.
9–28 OPUS-NT Programming Bruker Optik GmbH

File Functions
If wildcards are used, then LoadFile first loads all files into OPUS and pro-
cesses them in the following loop. Loading the files can become time consum-
ing with an increasing number of files. In this case it is preferable to load the
files via the standard OPUS Load function, as shown in the following example.

Example:

<Name> = ScanPath (’D:\OPUS\DATA\SEARCH*.0’);
<Counter> = GetArrayCount ();
StartLoop (<Counter, 0);
[<File>:AB] = Load (0, {DAP=’D:\OPUS\DATA’,
DAF=<Name>
[<Index>]});
....
<Index> = <Index> + 1
Unload ([<File>:AB]);
EndLoop (0);

9.11.2 ScanPath

Scans the path for the specified files and writes each file name into an array ele-
ment of the variable. Wildcard characters should be used; otherwise only a sin-
gle file will be found. To process all files in a directory, use *.* as the file
name.

Syntax:

<Variable> = ScanPath (‘File’);

<Variable> variable (array) receiving the files found in the path.

File drive, path and name of the files to be searched for.

9.11.3 Copy

Copies one or more files.

The Copy command also allows to change the file name while copying. Wild-
card characters in the file name may be used.

Syntax:

Copy (‘Source’, ‘Destination’);

Source drive, path and name of file(s) to be copied.

File drive, path and name of the destination file(s).

Example

Copy (‘C:\DATA\TEST*.0’, ‘D:\DATA\TEST*.1’);
Bruker Optik GmbH OPUS-NT Programming 9–29

Macro Command Reference
9.11.4 Rename

Renames one or more files. Files can also be moved to another directory.

Wildcard characters in the file names are allowed.

Syntax:

Rename (‘Source’, ‘Destination’);

Source drive, path and name of file(s) to be copied.

Destination drive, path and name of the destination file(s).

Example

Rename (‘C:\DATA\TEST*.*’, ‘C:\DATA\XYZ*.*’);

9.11.5 Delete

Deletes one or more files.

Wildcard characters in the file name are allowed.

Syntax:

Delete (‘File’);

File drive, path and name of file(s) to be deleted.

Example

Delete (‘C:\DATA\TEST*.*’);

9.12 Time Control Functions

Time control functions can be used to control the timing within a macro. Time
intervals as well as computer system time can be used.

GetTime gets system date and time
Timer instruction to achieve time control within a macro

9.12.1 GetTime

Gets system time and date.

This function gets the current system time and date of the computer. It returns
the (numeric) value for the year, month, day, hour, minute and second. All six
variables must be specified in the argument list of the command and all must
9–30 OPUS-NT Programming Bruker Optik GmbH

Display Functions
have been previously declared in the VARIABLES section. Arguments which
are not required can be replaced by zeros, e.g. GetTime (0, 0, 0,

<Hour>, <Minute>, <Second>);

Syntax:

GetTime (<Year>, <Month>, <Day>, <Hour>, <Minute>, <Second>);

<Year>,<Month>.... Variables to receive the specified value (year, month,
etc.).

The variable type must be NUMERIC. You must use format instructions to
convert the floating-point numbers to integers. Later you can change the format
to INTEGER, using format instructions.

9.12.2 Timer

Instruction to control the time behavior within a macro.

Syntax:

Timer (Option, Time);

Option specifies the behavior of the timer.

WAITTIME waits for the specified time interval.

WAITUNTIL waits until the specified time of day is reached (only use
HH:MM:SS format for time).

Time time can be specified as single number which is interpreted as
seconds or in HH:MM:SS format (HH = hours, MM = min-
utes, SS = seconds).

Note: You can also use the IF statement to control the time behaviour within a
macro.

9.13 Display Functions

Display functions are used to show or hide spectra and to access the display lim-
its

OpenDisplayWindow opens a new window for all result files
DisplaySpectrum shows a spectrum on screen
UnDisplaySpectrum hides a spectrum
GetDisplayLimits retrieves the current display limits of the macro display

window
Bruker Optik GmbH OPUS-NT Programming 9–31

Macro Command Reference
SetDisplayLimits sets the display limits for the current macro display win
dow

9.13.1 OpenDisplayWindow

Opens a display window, containing all files newly created by the macro.

Commands that only modify an existing file (like “Peak Pick”) will not be
affected by the OpenDisplayWindow command. Changes made by these com-
mands will be displayed in the display window, where the original data was
shown.

Syntax:

OpenDisplayWindow ();

This command requires no additional parameters. However, if used in a macro,
it should be the first command.

9.13.2 CloseDisplayWindow

Closes a display window, which has been opened with OpenDisplayWindow.

Commands that only modify an existing file (like “Peak Pick”) will not be
affected by the OpenDisplayWindow command. Changes made by these com-
mands will be displayed in the display window, where the original data was
shown.

Syntax:

CloseDisplayWindow ();

This command requires no additional parameters.

9.13.3 DisplaySpectrum

Display the specified spectrum.

Syntax:

DisplaySpectrum ([<File>:BlockID], Option);

<File> variable name of file to be displayed.

BlockID name of the data block to be displayed.

Option keyword for display scaling.

NOAUTOSCALE keep the current display limits.
9–32 OPUS-NT Programming Bruker Optik GmbH

Display Functions
SCALE_SELECTED autoscale to the selected file.

SCALE_ALL autoscale to all spectra in the window.

9.13.4 UnDisplaySpectrum

Removes the specified spectrum from the display. The file remains loaded and
can be displayed again using the DisplaySpectrum command.

Syntax:

UnDisplaySpectrum ([<File>:BlockID]);

<File> variable name of file to be hidden.

BlockID name of the data block to be hidden.

9.13.5 GetDisplayLimits

Retrieves the current display limits of the display window created with the
OpenDisplayCommand and saves them in the functions’ variables. If there was
no display window created, the active window will be taken instead.

Syntax:

GetDisplayLimits (<X-Start>, <X-End>, <Y-Min>, <Y-Max>;

<X-Start>.... variables used to save the values determined by the command.

All four variables must be specified and be of the type NUMERIC.

9.13.6 SetDisplayLimits

Sets the limits of the display window created with the OpenDisplayCommand
to the values specified. If there was no display window created the active win-
dow will be taken instead.

Syntax:

SetDisplayLimits (<X-Start>, <X-End>, <Y-Min>, <Y-Max>);

<X-Start>.... variables used to specify the display values.

All four variables must be specified and be of the type NUMERIC.

9.13.7 SetColor

Sets the display color of the specified spectrum.
Bruker Optik GmbH OPUS-NT Programming 9–33

Macro Command Reference
Syntax:

SetColor (<File>, <Color>);

<File> name of file variable.

Color keyword for display scaling.

BEIGE

BLACK

BLACK

BLUE

CYAN

CORAL

GREEN

GRAY

LIME

MAGENTA

MAROON

MIDNIGHT

OLIVE

PURPLE

RED

SEAGREEN

SKY

TEAL

VIOLET

YELLOW
9–34 OPUS-NT Programming Bruker Optik GmbH

Command Syntax of OPUS Functions
10 OPUS Command Reference

The OPUS commands accessible from the OPUS pull-down menus call OPUS
processing functions, that in turn perform the desired manipulation. These
OPUS processing function can be included in macros, scripts and external pro-
grams. Alternatively to launching a function via the OPUS pull-down menu
command, the function name can be typed in the OPUS command line.

10.1 Command Syntax of OPUS Functions

Syntax:

CommandName (Input List 1, ..., Input List n, {PAR 1=Value 1, ..., PAR
n=Value n});

CommandName name of the OPUS command.

Input List n list of input files (see below).

PAR n three letter parameter name n.

Value n value for parameter n.

Syntax for file list:

([<File 1>:BlockID 1] ... [<File n>:BlockID n]

<File n> name of input file or the file variable n.

BlockID n name of the data block of file n.

Note that the files in a list are separated by blanks, while the lists themselves are
separated by commas. Most functions require only one file list; a few files how-
ever, (like Make Compatible or Subtraction) need several file lists.

10.2 Including OPUS Commands in Macros

We strongly recommend to only use the Macro Editor, if you want to include
OPUS commands into macros. Using the Macro Editor guarantees that all rele-
vant parameters required by the command are inlcuded in the command line and
PARAMETER section. Furthermore, it is ensured that these parameters are ini-
tialized with valid values.
Bruker Optik GmbH OPUS-NT Programming 10–1

OPUS Command Reference
To append an OPUS command to a macro, simply select the command from the
OPUS pull-down menu, while the Macro Editor is running. Choose the appro-
propriate parameters, files and settings as usual in the dialog box of the com-
mand.

After clicking on the Execution button in the dialog box for executing the com-
mand, the OPUS command dialog box is replaced by a parameter dialog, that
lists all parameters relevant for the processing function. When you click the OK
button, the respective OPUS processing function will be appended to the macro.

Figure 61: Including an OPUS Command
10–2 OPUS-NT Programming Bruker Optik GmbH

Including OPUS Commands in Macros
Column 1: Abbreviation of the parameter and check box

Column 2: Parameter name

Column 3: Parameter value as set in the OPUS command dialog box

Column 4: Assigned macro variable

Whether a parameter will be appended to the command line or included in the
PARAMETER section is controlled by the check box. If the check box is not
selected, a parameter entry will be made in the PARAMETER section. We rec-
ommend to always include all parameters in the command line. This ensures,
that the commands are using correct parameter values at the time of command
execution, in case a command or a goup of commands accessing the same
parameter is repetedly used. A parameter may only appear once in the
PARAMETER section and therefore, the parameter can only have one value.
The only exception to this rule are the measurement commands, explained in
detail in the following chapters.

Note: parameters, that have been assigned macro variables must appear in
the command line!

Figure 62: Including an OPUS Command – Parameter Dialgo Box

Figure 63: Resulting Command Line
Bruker Optik GmbH OPUS-NT Programming 10–3

OPUS Command Reference
A combobox is displayed above the parameter list of OPUS commands, which
return a result or a file to the macro. From this box, you have to indicate the
variable supposed to hold the returned data. Although the OPUS command will
be processed correctly by the macro even if no variable was chosen, the
returned data then is not accessible.

10.3 Measurement Commands

As already mentioned, the measurement commands differ from the rest of the
OPUS commands. When you include the Measurement command in a macro,
you will find that only two parameters XPP and EXP are selected by default.
XPP represents the directory of the experiment file and EXP the name of the
experiment. It is highly recommended to assign macro variables to these
parameters. This guarantees, that a measurement started from a macro always
uses an existing experiment file (and therefore a defined parameter set). For
measurement functions, the remaining parameters won’t be included in the
PARAMETER section!

Other parameters than XPP and EXP should only be selected, if they are
intended to replace values stored in the experiment file or if macro variables
should be assigned to these parameters. This will become clear, if one looks at
the sequence in which a measurement command is executed.

Measurement without Using an Experiment File (not recom-
mended)

1) The measurement primarily uses the values entered in the PARAME-
TER section, if anything.

2) Parameter included in the command line override the values declared in
the PARAMETER section.

Example:

[<File>] = MeasureSample (0, {NSS = 16});

Regardless of the original settings the measurement will now run 16 scans.

Measurement Using an Experiment File (XPP and EXP
Selected)

The parameters of the PARAMETER section are ignored, and the parameters
stored in the experiment file will be used instead. Again, parameters included
in the command line override the values stored in the experiment file.

Example:

[<File>] = MeasureSample (0, {XPP = ’<XMP Path>’, EXP =
’default’, NSS = 16});
10–4 OPUS-NT Programming Bruker Optik GmbH

Reference Section
Regardless of the settings stored in the experiment file, the measurement will
now run 16 scans.

10.4 Reference Section

The following section describes the OPUS commands in detail. The sections
are all structured in the same way. You will find:

• the title, which consists of the OPUS command referenced in this
section.

• a summary of the command.

• an indication, whether the command modifies files or not.

• an explanation of the syntax.

• a table, listing all command parameters and their function.

• a note, if the command has not been implemented in OPUS to this
point in time.

All of the parameters you will find listed in the tables are required, and must be
stated as a part of the command. A parameter statement should therefore be
included either in the parameter list of the command or in the PARAMETER
section of the macro. If no parameter statement was made in a macro, OPUS
will use the parameters of the active parameter set, when executing the macro.
This usually leads to unpredictable results.

10.5 OPUS Functions Sorted Alphabetically

A

ABTR absorbance transmittance conversion
Average averages spectra

B

Baseline performs a baseline correction of a spectrum
BlackBody Black Body generation

C

ChangeDataBlockType changes the type of a data block
Convert converts spectra
CopyDataBlock copies a data block from one file to another
Cut cuts a frequency range out of a spectrum
Bruker Optik GmbH OPUS-NT Programming 10–5

OPUS Command Reference
D

Deconvolution Fourier self deconvolution
DeleteDataBlock deletes the specified data block
Derivative calculates the derivative

E

ExternalProgram starts an external program
Extrapolation extrapolates spectra

F

FFT Fast Fourier transformation
FreqCalibration frequency calibration

I

InfoInput adds an information block to a file
Integrate integrates a spectrum
InverseFT performs an inverse Fourier transformation

J

JCAMPToOPUS converts a JCAMP-DX file to OPUS format

K

KramersKronig performs a Kramers Kronig transformation

M

MakeCompatible makes spectra compatible
MeasureReference measures a background spectrum
Merge merges spectra

N

Normalize normalizes a spectrum

P

PeakPick creates a peak table
Plot plots spectra
PostFTZerofill Post Zerofilling of a spectrum

R

RamanCorrection applies Raman correction
Restore restores an original data file
10–6 OPUS-NT Programming Bruker Optik GmbH

OPUS Functions Sorted by Type
S

Save saves a spectrum file
SendFile sends a file via e-mail
SignalToNoise calculates the Signal-to-Noise ratio
Smooth smooths a spectrum
StraightLine inserts a straight line in a spectrum
Subtract subtracts one or more spectra from another spec-

trum

U

Unload removes a spectrum from the Browser

10.6 OPUS Functions Sorted by Type

Manipulation Functions

ABTR absorbance transmittance conversion
Average averages spectra
Baseline performs a baseline correction of a spectrum
BlackBody Black Body generation
Convert converts spectra
Cut cuts a frequency range out of a spectrum
Deconvolution Fourier self deconvolution
Derivative calculates the derivative
Extrapolation extrapolates spectra
FFT Fast Fourier transformation
FreqCalibration frequency calibration
InverseFT performs an inverse Fourier transformation
KramersKronig performs a Kramers Kronig transformation
MakeCompatible makes spectra compatible
Merge merges spectra
Normalize normalizes a spectrum
PostFTZerofill Post Zerofilling of a spectrum
RamanCorrection applies Raman correction
Smooth smooths a spectrum
StraightLine inserts a straight line in a spectrum
Subtract subtracts one or more spectra from another spec-

trum

Evaluation Functions

Integrate integrates a spectrum
PeakPick creates a peak table
SignalToNoise calculates the Signal-to-Noise ratio
Bruker Optik GmbH OPUS-NT Programming 10–7

OPUS Command Reference
File Functions

ChangeDataBlockType changes the type of a data block
CopyDataBlock copies a data block from one file to another
DeleteDataBlock deletes the specified data block
Restore restores an original data file
Save saves a spectrum file
SendFile sends a file via e-mail
Unload removes a spectrum from the Browser

Measurement Functions

MeasureReference measures a background spectrum
SendCommand send an optics command to the optics bench
SaveReference saves a reference spectrum from the AQP to disk
LoadReference loads a reference spectrum from the disk into the

AQP

Library Functions

LibrarySearchInfo information search in library files
LibrarySearchPeak peak search in library files
LibrarySearchStructure structure search in library files
LibrarySearchSpectrum spectrum search in library files
LibraryInitialize creates a new, empty library file
LibraryStore stores a new entry in a library file or replaces an

existing one
LibraryEdit edits an entry, the library description, and the

definition of information stored in a library file.
InfoInput adds an information block to a file or edits an

existing one

Miscellaneous Functions

ExternalProgram starts and external program
Plot plots spectra

10.7 OPUS Manipulation Functions

10.7.1 ABTR

Absorbance → Transmittance conversion.

This functions modifies the selected spectrum and changes the data block type
accordingly.
10–8 OPUS-NT Programming Bruker Optik GmbH

OPUS Manipulation Functions
ABTR ([<File>:BlockID], {...});

10.7.2 Average

Averages spectra.

This command requires three file lists:

File List 1: Spectra to be averaged.

File List 2: (optional) File to store the average result.

File List 3: (optional) File to store the standard deviation result.

If File List 2 and/or 3 are not specified, they have to be set to “0”.

Average ([<File 1>:BlockID 1], [<File 2>:BlockID 2], [<File 3>:BlockID 3],
{...});;

Parameter Value Description

CCM 1 automatic

2 AB → TR

3 TR → AB

Parameter Value Description

QA0 0 Do not average with number of scans

1 Average with number of scans

QA2 0 Don’t create average report

1 Create average report

QAE NO Don’t create standard deviation spectrum

YES Create standard deviation spectrum

QAF NO Don’t update standard deviation spectrum

YES Update standard deviation spectrum

QAL LIS Average selected files

FIL Average files selected by name and path

QAM Text Path of the files to be averaged

QAN Text Name of the files to be averaged

QAO Numerisch BlockID of the files to be averaged

QFB Text Path of the IDENT method

QFC Text Name of the IDENT method
Bruker Optik GmbH OPUS-NT Programming 10–9

OPUS Command Reference
10.7.3 Baseline

Performs a baseline correction of a spectrum.

This command modifies the selected spectrum.

Baseline ([<File>:BlockID], {...});

10.7.4 BlackBody

Calculates a spectrum of a Black Body radiator.

This function adds a single channel sample data block to the selected file(s).

BlackBody ([<File>:BlockID], {...});

10.7.5 Convert

Converts spectra.

This functions modifies the selected spectrum and changes the data block type
accordingly.

Convert ([<File>:BlockID], {...});

Parameter Value Description

BME 1 Rubber Band correction

2 Scattering correction

BPO 10 ... 200 number of baseline points

BCO 0 include CO2 bands

1 exclude CO2 bands

Parameter Value Description

QTE pos. number temperature of the Black Body radiator

QPM 0 energy

1 photons
10–10 OPUS-NT Programming Bruker Optik GmbH

OPUS Manipulation Functions
10.7.6 Cut

Cuts out a frequency range of a spectrum file.

This functions modifies the selected spectrum file.

Cut ([<File>:BlockID], {...});

10.7.7 Deconvolution

Performs a Fourier self deconvolution.

This functions modifies the selected spectrum.

Deconvolution ([<File>:BlockID], {...});

Parameter Value Description

CSD 1 AB, TR, Refl

2 KM → Refl

3 AB, TR → ATR

4 ATR → AB

5 Refl → lgRefl

6 lgRefl → Refl

7 ScSm → Raman

8 Raman → ScSm

Parameter Value Description

CFX number X-start frequency

CLX number X-end frequency

Parameter Value Description

DSP peak form

LO Lorentzian

GA Gaussian

DEF pos. number deconvolution factor

DNR pos. number noise reduction factor

DES number X-start frequency

DEE number X-end frequency

DWR 0 frequency limits

1 file limits
Bruker Optik GmbH OPUS-NT Programming 10–11

OPUS Command Reference
10.7.8 Derivative

Calculates the derivative of a spectrum.

This functions appends a new data block, containing the derivative of the spec-
trum, to the original data.

Derivative ([<File>:BlockID], {...});

10.7.9 Extrapolation

Extrapolates a spectrum.

This functions modifies the selected spectrum.

Extrapolation ([<File>:BlockID], {...});

10.7.10 FFT

Performs a Fast Fourier transformation..

This command performs a fast Fourier transformation of an interferogram. The
result is a single channel spectrum data block, which will be added to the file.

FFT ([<File>:BlockID], {...});

Parameter Value Description

QSP
5, 9, 13,
17, 21, 25

number of smoothing points

QOD 1...5 order of derivative

Parameter Value Function

QX0 number extrapolate to zero

QX1 number extrapolate to infinity

QX2 number lower frequency limit

QX3 number upper frequency limit

QX4 number new end frequency
10–12 OPUS-NT Programming Bruker Optik GmbH

OPUS Manipulation Functions
Parameter Value Description

FTS number start frequency of the spectrum

FTE number end frequency of the spectrum

FZF pos. number Zerofilling factor

FTR pos. number resolution

FHR pos. number phase resolution

FBW
bit code used to indicate forward/backward or
even/odd

1 forward interferogram

2 backward interferogram

8 even separation

16 odd separation

FTA apodization function

BX Boxcar

TR Triangular

4P Four Point

HG Happ-Genzel

B3 Blackman-Harris 3-term

B4 Blackman-Harris 4-term

NBW Norton-Beer, weak

NBM Norton-Beer, medium

NBS Norton-Beer, strong

FLR pos. number limit resolution

FHZ phase correction

ML Mertz

SM Signed Mertz

PW Power spectrum

MS Mertz stored phase

NO No – save complex data

FZF pos. number Zerofilling factor

FNL 0 no nonlinearity correction

1 nonlinearity correction

FNC pos. number nonlinearity correction – detector cutoff

FNE pos. number nonlinearity correction – mod. efficiency

FSM ZPD search mode

AL largest absolute value
Bruker Optik GmbH OPUS-NT Programming 10–13

OPUS Command Reference
10.7.11 FreqCalibration

Performs a frequency calibration.

This functions modifies the selected spectrum.

FreqCalibration ([<File>:BlockID], {...});

10.7.12 InverseFT

Performs an inverse Fourier transformation.

This command performs an inverse Fourier transformation of a spectrum. The
result is a single channel spectrum data block, which will be added to the file.

MN minimum

MX maximum

MI mid position between min and max

NO use stored value

MA manual input

FPP pos. number peak position

FSR pos. number search range

FSY symmetry for search range

0 symmetrical

1 antisymmetrical

2 automatic

FTT to do list — bit list for result data blocks

1 absorbance

2 interferogram

4 single channel

8 power spectrum

16 phase spectrum

64 single channel (real)

128 single channel (imaginary)

Parameter Value Description

QF0 NO do not restore original values

YES restore original values

MWC number factor

AWC number offset
10–14 OPUS-NT Programming Bruker Optik GmbH

OPUS Manipulation Functions
InverseFT ([<File>:BlockID], {...});

10.7.13 KramersKronig

Performs a Kramers Kronig transformation.

This command performs a Kramers-Kronig transformation of a reflectance
spectrum. The real and imaginary part of an absorbance-like spectrum will be
calculated. The result is a single channel spectrum data block which will be
added to the file.

KramersKronig ([<File>:BlockID], {...});

10.7.14 MakeCompatible

Makes spectra compatible.

This functions interpolates the selected spectrum to the frequency limits and
point raster of a reference spectrum.

This functions modifies the selected spectrum and changes the data block type
accordingly. The reference spectrum remains unchanged.

Parameter Value Description

RSY symmetry

0 symmetric

1 Antisymmetric

RXS number X-start frequency

RXE number X-end frequency

RWR 0 frequency limits used

1 file limits used

Parameter Value Description

KKR desired result

0 refractive index (complex)

1 absorbance

2 dielectric function (complex)

3 phase

KKS number X-start frequency

KKE number X-end frequency

KWR 0 use specified frequency limits

1 use file limits
Bruker Optik GmbH OPUS-NT Programming 10–15

OPUS Command Reference
MakeCompatible ([<File1>:BlockID1], ([<File2>:BlockID2], {...});

<File1> reference file.

<File2> file to be interpolated.

10.7.15 Merge

This function has not been implemented yet.

Merges spectra.

Merge ([<File>:BlockID], {...});

10.7.16 Normalize

Normalizes a spectrum.

This functions modifies the selected spectrum.

Normalize ([<File>:BlockID], {...});

10.7.17 PostFTZerofill

Performs a post Zerofilling of a spectrum.

This functions modifies the selected spectrum.

Parameter Value Description

CME interpolation method

2 interpolation

3 reduce resolution

Parameter Value Description

NME 1 min-max normalization

2 vector normalization

3 offset correction

NWR 0 use specified frequency limits

1 use file limits

NFX number X-start frequency

NLX number X-end frequency
10–16 OPUS-NT Programming Bruker Optik GmbH

OPUS Manipulation Functions
PostFTZerofill ([<File>:BlockID], {...});

10.7.18 RamanCorrection

Performs a Raman correction.

This functions modifies the selected spectrum.

RamanCorrection ([<File>:BlockID], {...});

10.7.19 Smooth

Smoothes a spectrum.

This functions modifies the selected spectrum.

Parameter Value Description

PZF pos. number Zerofilling Factor

PZS number X-start frequency

PZE number X-end frequency

PWR frequency limits

0 use specified frequency limits

1 use file limits

Parameter Value Description

QC0 background correction

0 do not perform correction

1 perform correction

QC1 scatter correction

0 do not perform correction

1 perform correction

QC2 restore original data

0 do not perform correction

1 perform correction

QC3 Text path for white light source spectrum

QC4 Text name of white light source spectrum

QC5 pos. number reference temperature
Bruker Optik GmbH OPUS-NT Programming 10–17

OPUS Command Reference
Smooth ([<File>:BlockID], {...});

10.7.20 StraightLine

Generates a straight line.

This functions modifies the selected spectrum.

StraightLine ([<File>:BlockID], {...});

10.7.21 Subtract

Subtracts one or more spectra from another spectrum.

The spectrum from which the others are subtracted is modified. The spectrum/
spectra which are subtracted stay unchanged.

Subtract ([<File A>:BlockIDA], ([<File B>:BlockIDB], {...});

<File A> file to be subtracted from, this file is modified.

<File B> file(s) which are subtracted from <FileA>.

Parameter Value Description

QSP
5, 9, 13,
17, 21, 25

number of smoothing points

Parameter Value Description

GFX number X-start frequency

GLX number X-end frequency

Parameter Value Description

SUB subtraction mode

1 interactive

3 autosubtraction

4 use whole range

SUN number of spectra

SX1 X-start frequency

SX2 X-end frequency
10–18 OPUS-NT Programming Bruker Optik GmbH

OPUS Evaluation Functions
10.8 OPUS Evaluation Functions

10.8.1 Integrate

Integrates a spectrum.

This function adds an integration report to the file.

Integrate ([<File>:BlockID], {...});

10.8.2 PeakPick

Creates a peak table.

This function adds a peak table data block to the file.

PeakPick ([<File>:BlockID], {...});

Parameter Value Description

LPT text path for integration method

LFN text file name of the integration method

LRM report mode

0 overwrite old integration report

1 merge integration reports

2 append integration report

Parameter Value Description

PSM peak mode

1 standard peak pick

2 2. derivative

NSP
5, 9, 13,
 17, 21, 25

number of points used for 2. derivative

WHR frequency limits

0 use specified frequency limits

1 use file limits

LXP number start frequency

FXP number end frequency

PPM peak definition

1 autodetect (min or max)

2 find maximum
Bruker Optik GmbH OPUS-NT Programming 10–19

OPUS Command Reference
10.8.3 SignalToNoise

Calculates the Signal-to-Noise ratio.

This function adds parameters to the data parameter block of the selected spec-
trum.

SignalToNoise ([<File>:BlockID], {...});

3 find minimum

PTR pos. number find peaks > value (absolute)

QP0 decimals

YES digits after decimal, user-defined

NO digits after decimal, not defined by user

QP3 pos. integer digits after decimal

QP4 peak limits (%)

YES use peak limits

NO ignore peak limits

QP5 pos. integer find peaks < value (%)

QP6 upper absolute peak limit

YES use upper absolute peak limit

NO ignore upper absolute peak limit

QP7 pos. integer find peaks < value (absolute)

QP8 lower absolute peak limit

YES use lower absolute peak limit

NO ignore lower absolute peak limit

Parameter Value Description

NF1 number start frequency

NF2 number end frequency

SN1 number S/N (RMS)

SN2 number S/N (peak to peak)

SN3 number maximum ordinate in S/N region

SN4 number minimum ordinate in S/N region

SNF flags
10–20 OPUS-NT Programming Bruker Optik GmbH

OPUS File Functions
10.9 OPUS File Functions

10.9.1 ChangeDataBlockType

This function has not been implemented yet.

Change the data block type.

This functions does not modify the specified data block, only the block ID is
changed.

ChangeDataBlockType ([<File>:BlockID], {...});

10.9.2 CopyDataBlock

This function has not been implemented yet.

Copies a data block from one file to another.

This function adds the specified data block to the selected file in file list B.

CopyDataBlock ([<File A>:BlockID], ([<File B>], {...});

<file A> source file.

blockID name of the data block to copy.

<file B> destination file.

10.9.3 DeleteDataBlock

Deletes the specified data block.

The specified block is removed from the file.

DeleteDataBlock ([<File>:BlockID], {...});

10.9.4 Restore

Restores original File.

This function restores the original file and discards all changes made so far. All
changes are lost if the results had not been saved before.

Restore([<File>:BlockID], {});

The function does not require any parameters.
Bruker Optik GmbH OPUS-NT Programming 10–21

OPUS Command Reference
10.9.5 Save, SaveAs

Saves a spectrum file.

This function stores the eventually modified file to disk.

Save ([<File>:BlockID], {...});

Save As ([<File>:BlockID], {...});

Parameter Value Description

OEX overwrite mode

0 increment file name

1 overwrite file

SAN file name

DAP target directory

COF bit combination for save mode

2 save all data blocks

4 move file

16 remove copies

32 save as JCAMP.dx file

64 save as x,y table

128 replace original data

256 save as Galactics GRAMS file

512 unload file after saving it

1024 save as Pirouette file

The following parameters will only be used when saving a file as an x,y table.

DPA pos. number number of decimals, abscissa

DPO pos. number number of decimals, ordinate

SEP character separator

YON Y-values

1 Y-Values only

0 X and Y-Values

ADP data points

1 use all data points

0 do not use all data points
10–22 OPUS-NT Programming Bruker Optik GmbH

OPUS Measurement Functions
10.9.6 SendFile

Sends a file via e-mail.

This function does not modify the specified file.

SendFile ([<File>:BlockID], {...});

10.9.7 Unload

Removes a spectrum from Browser.

This function removes the specified file from the OPUS file list. The file is no
longer accessible from the macro.

Unload ([<File>:BlockID], {...});

The function does not require any parameters.

10.10 OPUS Measurement Functions

We strongly recommend to set the measurement parameters for a macro using
an experiment file. Most of the parameter are linked and checked for consis-
tency before starting an acquisition. Therefore, an inconsistent or wrong
parameter set will most likely not be able to start an acquisition, and can be rec-
ognized easily. Only a few of the parameters listed below can be set without
any problems either manually or by using variables.

10.10.1 Measurement Commands

The measurement commands always use the same parameters. You should only
use the parameters listed here.

1) Measure Reference: MeasureReference ({...}); acquires a background
spectrum.

2) Measure Sample: <File> = MeasureSample ({...}); acquires a sample
spectrum.

3) Measure Repeated: <File> = MeasureRepeated ({...}); acquires a set of
sample spectra.

Parameter Value Description

COF data blocks

0 send only specified block

2 send all blocks
Bruker Optik GmbH OPUS-NT Programming 10–23

OPUS Command Reference
4) Measure Rapid TRS: <File> = MeasureRapidTRS ({...}); performs a
rapid scan acquisition.

5) Measure Step Scan Trans: <File> = MeasureStepScanTrans ({...}); per-
forms a Step Scan acquisition, using a transient recorder.

10.10.2 SendCommand

Sends an optics command to the optics bench.

This function does not need an input spectrum.

SendFile (0, {...});

10.10.3 SaveReference

Saves a reference spectrum from the AQP to disk.

This function creates a new file.

SaveReference (0, {...});

The function does not require any parameters.

10.10.4 LoadReference

Loads a reference spectrum from disk into the AQP.

This function does not modify the spectrum.

LoadReference ([<File>:ScRf], {...});

The function does not require any parameters.

Parameter Value Description

SNM text sample name

SFM text sample preparation

CNM text operator

XPM text experiment file name

XPP text path for experiment file

RES pos. number resolution

NSS pos. number number of scans

Parameter Value Description

UNI text text to be sent
10–24 OPUS-NT Programming Bruker Optik GmbH

OPUS Library Functions
10.11 OPUS Library Functions

10.11.1 LibrarySearchInfo

Searches for information in a spectrum library.

This function performs a query for information within a spectrum library. The
query text must be supplied in a query file (extension .INL); use the OPUS-NT
Information Search dialog to create and save a query file.

[<File1>:BlockID] = LibrarySearchInfo (0, {...});

Standard search.

<File 1> Contains the search result.

[<File1>:BlockID] = LibrarySearchInfo ([<File2>:BlockID], {...});

Query using an existsing search report.

<File 1> Contains the search result.

<File 2> Contains the search report.

10.11.2 LibrarySearchPeak

Searches for peaks in a spectrum library.

This function performs a query for peaks within a spectrum library. The query
R must be supplied in a query file (extension .PKL); use the OPUS-NT Peak
Search dialog to create and save such a query file.

Parameter Value Description Remarks

SIH NUMERIC
maximum number
of hits

must be > 0

SIN STRING
name of the infor-
mation query file

file name including exten-
sion (.INL)

SIP STRING
path of the query
file

path without teminating “\”

LB1 STRING
list of library files
to be searched

names of the library files.
They must be stated includ-
ing drive and path but with-
out extension. Separate
multiple file names with
“@”.
Bruker Optik GmbH OPUS-NT Programming 10–25

OPUS Command Reference
[<File1>:BlockID] = LibrarySearchPeak (0, {...});

Standard search.

<File 1> Contains the search result.

[<File1>:BlockID] = LibrarySearchPeak ([<File2>:BlockID], {...});

Query using a search report.

<File 1> Contains the search result.

<File 2> Contains the search report.

Parameter Value Description Remarks

SPQ NUMERIC
minimum Hit qual-
ity

Range between 1 and 1000
Will only be used in combi-
nation with the Calculate
Hit Quality algorithm.

SPH NUMERIC
maximum Hit num-
ber

must be > 0

SPA NUMERIC search algorithm

512
hit if one peak
matches

1024
hit if all peaks
match

2048 calculate hit quality

4096
count matching
peaks

PNP STRING
name of the peak
query file

file name including exten-
sion (.PKL)

PPP STRING
path of the peak
query file

path without teminating “\”

LB1 STRING
list of library files
to be searched

names of the library files.
They must be stated includ-
ing drive and path but with-
out extension. Separate
multiple file names with
“@”.
10–26 OPUS-NT Programming Bruker Optik GmbH

OPUS Library Functions
10.11.3 LibrarySearchStructure

Searches for chemical structures in a spectrum library.

This function performs a query for chemical structures within a library file. The
query must be supplied in a structure data block.

LibrarySendStructure([<File1>:BlockID], 0, {...});

Standard search.

<File 1> Contains the query structure.

LibrarySearchStructure ([<File1>:BlockID], [<File1>:BlockID], {...});

Query using an existing search report. The result will be appended to the file
containing the structure block.

<File 1> Contains the query structure.

<File 2> Contains the search report.

10.11.4 LibrarySearchSpectrum

Searches for spectra in a spectrum library.

This function performs a query for peaks within a spectrum library. The query
spectrum must be absorbance-like.

LibrarySearchSpectrum ([<File1>:BlockID], 0, {...});

Standard search.

<File 1> The query spectrum.

Parameter Value Description Remarks

STH NUMERIC
maximum number
of Hits

must be > 0

LAL NUMERIC search algorithm

8192 match exact

12288 match embedded

LB1 STRING
list of library files
to be searched

names of the library files.
They must be stated includ-
ing drive and path but with-
out extension. Separate
multiple file names with
“@”.
Bruker Optik GmbH OPUS-NT Programming 10–27

OPUS Command Reference
LibrarySearchSpectrum ([<File1>:BlockID], [<File2>:BlockID], {...});

Query using a search report.

<File 1> The query spectrum.

<File 2> Contains the search report.

Parameter Value Description Remarks

LSS NUMERIC sensitivity

Range between 1 and 20
Will only be used in combi-
nation with the Standard
algorithm.

SSQ NUMERIC
minimum Hit qual-
ity

Range between 1 and 1000

SSH NUMERIC
maximum number
of Hits

must be > 0

SS1 NUMERIC search algorithm

When using spectrum corre-
lation algorithms, the value
will always be the sum of
three options.

1 standard

2
standard, use exist-
ing peak table

4
spectrum correla-
tion

+16 no derivative
one of the three derivatiza-
tion types must be added to
the base value.

+32 first derivative

+64 second derivative

+128
vector normaliza-
tion

one of the two normalization
types must be added to the
base value.

+256
min-max normal-
ization

LB1 STRING
list of library files
to be searched

names of the library files.
They must be stated includ-
ing drive and path but with-
out extension. Separate
multiple file names with
“@”.
10–28 OPUS-NT Programming Bruker Optik GmbH

OPUS Library Functions
10.11.5 LibraryInitialize

Creates a new, empty library.

A method file (extension .MTD) and a text file (extension .TXD) is needed to
create a library file.

LibraryInitialize ({...});

The function does not require any parameters.

10.11.6 LibraryStore

Stores a new entry, the library description, and the definition of information
saved in a library file.

LibraryStore (0, [<File>:BlockID], {...});

The function does not require an input file list.

Parameter Value Description Remarks

LPT STRING
path of the text defi-
nition file

path without teminating “\”

LBT STRING
name of the text
definition file

file name without extension

MTP STRING
path of the method
file

path without teminating “\”

LMT STRING
name of the method
file

file name without extension

LBP STRING
directory of the new
library file

path without teminating “\”

LBN STRING
name of the library
file

file name without extension

LID STRING library description maximum 79 characters

LCP STRING copyright maximum 79 characters
Bruker Optik GmbH OPUS-NT Programming 10–29

OPUS Command Reference
10.11.7 LibraryEdit

This function loads and deletes entries of a library. Furthermore, the descrip-
tion of the library as well as the description of the stored information can als be
edited.

[<File>:BlockID] = LibraryEdit (0, {...});

Syntax to load a spectrum of a library entry.

LibraryEdit (0, {...});

Syntax for any other option

Parameter Value Description Remarks

LSM NUMERIC storage mode

1 new entry

3 replace entry

5 replace info

7
insert/replace struc-
ture

LBP STRING
directory of the
library file

path without teminating “\”

LBN STRING
name of the library
file

file name without extension

LBS NUMERIC entry number
for all storage modes except
“New Entry”.
10–30 OPUS-NT Programming Bruker Optik GmbH

OPUS Library Functions
.

10.11.8 InfoInput

Allows information input.

This function adds an information block to the selected file. Depending on the
mode, either the complete info block is replaced, only selected information of
an existing info block is replaced, or a new file with an info block will be cre-
ated.

InfoInput ([<File>:BlockID], {...});

Syntax if a block should be replaced or extended.

[<File>:BlockID] = InfoInput ({...});

Syntax if a new file should be created.

Parameter Value Description Remarks

LMO NUMERIC edit mode

2 load entry

5 delete entry

13
change information
set

14 change description

LBS NUMERIC entry number
only required for the “Load
Entry” and “Delete Entry”
mode.

LBP STRING
directory of the
library file

path without teminating “\”

LBN STRING
name of the library
file

file name without extension

LID STRING
new information
definintion file or
library description

only required for the
“Chande Info Definition”
and “Chande Description”
mode. Contains the com-
plete path and name of the
new information definition
file (extension .TXD) or the
description, depending on
the mode.
Bruker Optik GmbH OPUS-NT Programming 10–31

OPUS Command Reference
Parameter Value Description

IRM STRING
information input
mode

a

a. If stated, make sure to consider the following points:
• The parameter IRM is not allowed in the parameter list.

• Null strings have to be assigned to the parameters INM and INP
(e.g. INM = ’’)

• The paramters Txx have to be specified consecutively, starting with T00.
For example, in case of 4 lines, the parameters T00, T01, T02, T03, T04
must be stated.

• The parameters Ixx responsible for the line content, like all other options,
don’t need to be specified consecutively.

O
the complete info
block will be over-
written.

R
the complete info
block will be
replaced.

N
generate new info
file

INP STRING
path of the info defi-
nition file

Required for the modes “O”
and “N”.

INM STRING
name of the info def-
inition file

Required for the modes “O”
and “N”.

I01 STRING information of line 1 b

b. Specify the text to be entered in the info block using the parameters Ixx. xx
represents the line numbers in the info block. You only have to state parameters for
the lines in which you wish to enter text. The total number of lines is defined in the
info definition file.

I02 STRING information of line 2

...

I99 STRING
information of line
99

T01 STRING description of line 1

T02 STRING description of line 2

...

T99 STRING
description of line
99
10–32 OPUS-NT Programming Bruker Optik GmbH

Miscellaneous OPUS Functions
10.12 Miscellaneous OPUS Functions

10.12.1 ExternalProgram

Starts an external program.

This function launches an external program, forwards parameters and supplies
the means of communication with the external program. DDE connections as
well as Named Pipes are supported.

ExternalProgram ([<File>:BlockID], {...});

Parameter Value Description

XPF start as OPUS task

0
OPUS starts the program, then breaks off all
communictation with the external program

1 program is not detached

XST type of program start and connection type

0 start the program; connection via a pipe

1
don’t start the program; connection via the
server pipe

2 start the program; open a DDE connection

3
don’t start the program; connection via the
server pipe

XPR Text
name of the program to be launched, includ-
ing path

XPA Text parameteres to be exchanged

XWI start 16bit program in its own VDM

0 use common VDM

1 extra VDM

XWS window size at start

0 normal

1 maximized

2 minimized

3 hidden

XCW wait for program termination

0 only start program

1 wait for result/end
Bruker Optik GmbH OPUS-NT Programming 10–33

OPUS Command Reference
10.12.2 ParameterEditor

Changes the sample parameters.

This function changes the following parameters:

• sample name

• sample form

• user name

• sample number

Note that the statement of all values is required when executing this function.
In addition, the axes labels and scaling factors used for the axes can be entered.

ParameterEditor ([<File>:BlockID], {...});

XSB
start in background mode – not supported by
Windows NT. Can be replaced by XWS

XEM OS/2 spezific – no longer supported

XDM OS/2 spezific – no longer supported

XVP OS/2 spezific – no longer supported

XPM <C/S> OS/2 spezific – no longer supported

DDE transaction type

Bit 0 gelöscht don’t send command

1 poke

3 execute

5 request

DDS Text DDE server name

DDT Text DDE topic

DDI Text DDE item

DDD Text text-coded binary data
10–34 OPUS-NT Programming Bruker Optik GmbH

Miscellaneous OPUS Functions
10.12.3 Plot

Plots spectra.

This function does not change the spectrum.

Plot ([<File>:BlockID], {...});;

PPA starts with FRM=n and defines how many frame parameters follow. For
each frame the following parameters (separated by commas) are necessary:

Parameter Value Description

CNM Text user name

SNM Text sample nname

SFM Text sample form

RSN Zahl sample number

XTX Text X-axis label

YTX Text Y-axis label

ZTX Text Z-axis label

XAF Number X-axis scaling factor

YAF Number Y-axis scaling factor

ZAF Number Z-axis scaling factor

Parameter Value Description

PDV output device

Printer printer

Clipboard clipboard

SCP Text path of the template used for plotting

SCN Text name of the template used for plotting

PUN devices; currently not evaluated

POP Text output path; currently not evaluated

POF Text output file; currently not evaluated

PDH window handle; currently not evaluated

PL2 Number number of peaks to be labeled

PPA Text
Codes several parameters in a string that are used
for different frames
Bruker Optik GmbH OPUS-NT Programming 10–35

OPUS Command Reference
10.12.4 VBScript

Starts a VisualBasic script

This function loads and then runs a VisualBasic script. Parameters and data
blocks can be forwarded to the script

VBScript ([<File>:BlockID], {...});

Parameter Value Description

NPL Number number of spectra in the current frame

XSP Number X start frequency

XEP Number X end frequency

YMN Number lowest value of the Y axis

YMX Number highest value of the Y axis

ASE YES/NO AutoScale the spectrum frame

CWN YES/NO use compressed wave numbers

COL Numbers colors of each curve, separated by commas

Parameter Value Description

VBS Text name of the script, including path

VBP Text parameters to be forwarded to the script

VBW wait for termination

0 immediate return after starting the script

1 wait for result/end

VBH start in background mode

0 start in foreground – script will be displayed

1 start in background – script will not be dis-
played
10–36 OPUS-NT Programming Bruker Optik GmbH

11 OPUS Parameter Reference

The reference section of this chapter presents a complete list of all OPUS
parameters. Please keep in mind, that currently some parameters are not yet
implemented.

OPUS distinguishes between parameters stored together with a spectrum and
such, that are used to control OPUS functions. Not all existing parameters of
the former type are necessarily saved in a spectrum file.

Three different types of data exist:

• numerical – the parameter is a number

• text – the parameter is a text

• list of values – the parameter is a text, but only certain values are
allowed. A list of possible values is included. The value on the left
side of the equal sign is returned to the macro, its explanation is
given on the right side.

Sample Parameters

The sample parameters stored with the spectrum:

SNM (text) Sample Name
SFM (text) Sample Form
CNM (text) Operator Name
HIS (text) History of Last Operation
PTH (text) Measurement Path
EXP (text) Experiment
PAT (text) Path of File
NAM (text) Filename
NA2 (text) Ch. 2 Filename
ATX (text) Annotation text
XPP (text) Experiment Path

Data Block-Specific Parameters

These are specific parameters stored with a spectrum. There exists a separate
set of paratmeters for each spectral data block stored in a file.

Standard Parameters

DPF (numerical) Data Point Format
NPT (numerical) Number of Data Points
FXV (numerical) Frequency of First Point
LXV (numerical) Frequency of Last Point
Bruker Optik GmbH OPUS-NT Programming 11–1

OPUS Parameter Reference
CSF (numerical) Y - Scaling Factor
MXY (numerical) Y - Maximum
MNY (numerical) Y - Minimum
DXU (list of values) X Units

WN = Wavenumber cm-1
MI = Micron
NM = Nanometers
LGW = Log Wavenumber
MIN = Minutes
SEC = Seconds
PNT = Points
EV = eV
MM = Millimeters
CM = Centimeters
MIS = msec
MUS = µsec

DYU (list of values) Y Units
SC = Single channel
TR = Transmittance [%]
AB = Absorbance Units
KM = Kubelka Munck
LA = Log Absorbance
DR = Diffuse Reflectance
ABS = Absorbance
REF = Reflectance
TRA = Transmittance
RRK = Re (Amplitude Reflectivity Coefficient)
IRK = Im (Amplitude Reflectivity Coefficient)
RTK = Re (Amplitude Transmission Coefficient)
ITK = Im (Amplitude Transmission Coefficient)
DF1 = Re (Dielectric Function)
DF2 = Im (Dielectric Function)

DAT (text) Date of Measurement
TIM (text) Time of Measurement

User-Defined Labels

XTX (text) X - axis Label
YTX (text) Y - axis Label
ZTX (text) Z axis Label
XAF (numerical) X axis factor
YAF (numerical) Y axis factor
ZAF (numerical) Z axis factor

Derivatives, Smoothing

DER (numerical) Derivative
QS1 (text) Derivative
SMO (numerical) Smoothing points for der.
QS0 (text) Smoothing points
11–2 OPUS-NT Programming Bruker Optik GmbH

3D Files

GSQ (numerical) GS Base Quality
AOX (numerical) Map Origin X
AOY (numerical) Map Origin Y
DDX (numerical) Map Delta X
DDY (numerical) Map Delta Y
NPX (numerical) Map Points in X
NPY (numerical) Map Points in Y

S/N Ratio

NF1 (numerical) First S/N Frequency Limit
NF2 (numerical) Second S/N Frequency Limit
SN1 (numerical) S/N (RMS)
SN2 (numerical) S/N (Peak-to-Peak)
SN3 (numerical) Max. Ordinate in S/N Region
SN4 (numerical) Min. Ordinate in S/N Region
SNF (numerical) S/N Flags

Frequency Calibration

MWC (numerical) Mult. for Freq.Calib
AWC (numerical) Add for Freq.Calib

Post-Search Specturm Extraction

HQU (numerical) Hit Quality
COM (text) Compound Name

Instrument Parameters

Parameters used for the spectrometer settings that are stored together with a
spectrum:

DPH (numerical) Demod. Phase (Degrees)
MOF (numerical) Modulation Frequency
NLA (numerical) NL Alpha
NLB (numerical) NL Beta
HFL (numerical) High Folding Limit
LFL (numerical) Low Folding Limit
DFR (numerical) Digital Filter Reduction
DFC (numerical) Number of Filter Coef.
HFF (numerical) Digital Filter HFL
LFF (numerical) Digital Filter LFL
ASG (numerical) Actual Signal Gain
ARG (numerical) Actual Ref. Signal Gain
ALF (numerical) Actual Low Pass Filter
AHF (numerical) Actual High Pass Filter
ASS (numerical) Number of Sample Scans
ARS (numerical) Number of Background Scans
GFW (numerical) Number of Good FW Scans
Bruker Optik GmbH OPUS-NT Programming 11–3

OPUS Parameter Reference
GBW (numerical) Number of Good BW Scans
BFW (numerical) Number of Bad FW Scans
BBW (numerical) Number of Bad BW Scans
DUR (numerical) Scan time (sec)
RSN (numerical) Running Sample Number
PKA (numerical) Peak Amplitude
PKL (numerical) Peak Location
PRA (numerical) Backward Peak Amplitude
PRL (numerical) Backward Peak Location
SSM (numerical) Sample Spacing Multiplicator
SSP (numerical) Sample Spacing Divisor
SGP (numerical) Switch Gain Position
SGW (numerical) Gain Switch Window
INS (text) Instrument Type
ITF (list of values) Interface Type for Optic

0 = 25/48
1 = 22/28/55/66/88/120/100
2 = 85/110/113

SIM (numerical) Simulation Mode
DEB (numerical) Debug Printer Mode
LOG (numerical) Logfile for Measurement
ADR (numerical) AQP Adress
AD2 (numerical) AQP2 Adress
RMX (numerical) Resolution Limit
PLL (numerical) Maximum PLL Setting
FFT (numerical) Maximum FT Size in K’s
MXD (numerical) Maximum ADC Sate in Hz
FOC (numerical) Focal Length
ABP (numerical) Absolute Peak Pos in Laser*2
LWN (numerical) Laser Wavenumber
RLW (numerical) Raman Laser Wavenumber
RLP (numerical) Raman Laser Power in mW
RDY (list of values) Ready Check

0 = OFF
1 = ON

RC0 (list of values) Raman Background Corrected
NO = No
YES = Yes

RC1 (list of values) Raman Scattering Corrected
NO = No
YES = Yes

SRT (numerical) Start time (sec)
ERT (numerical) End time (sec)
MAX (numerical) X Measurement Position
MAY (numerical) Y Measurement Position
AN1 (numerical) Analog Signal 1
AN2 (numerical) Analog Signal 2

Data Acquisition Parameters

Parameters used for the acquisition of data that are stored together with a spec-
trum:
11–4 OPUS-NT Programming Bruker Optik GmbH

CH2 (list of values) Channel 2
0 = OFF
1 = ON

SGN (list of values) Signal Gain, Sample
-1 = Automatic
0 = 1
1 = 2
2 = 4
3 = 8
4 = 16
5 = 32
6 = 64
7 = 128

SG2 (list of values) Signal Gain, Sample
-1 = Automatic
0 = 1
1 = 2
2 = 4
3 = 8
4 = 16
5 = 32
6 = 64
7 = 128

RGN (list of values) Signal Gain, Background
-1 = Automatic
0 = 1
1 = 2
2 = 4
3 = 8
4 = 16
5 = 32
6 = 64
7 = 128

RG2 (list of values) Signal Gain, Background
-1 = Automatic
0 = 1
1 = 2
2 = 4
3 = 8
4 = 16
5 = 32
6 = 64
7 = 128

GSW (numerical) Gain Switch Window
GSG (list of values) Gain Switch Gain

1 = OFF
8 = ON

AQM (list of values) Acquisition Mode
SN = Single Sided
DN = Double Sided
SF = Single Sided Fast Return
SD = Single Sided, Forward-Backward
DD = Double Sided, Forward-Backward
DF = Double Sided, Fast Return
Bruker Optik GmbH OPUS-NT Programming 11–5

OPUS Parameter Reference
NSS (numerical) Sample Scans
NSR (numerical) Background Scans
REP (numerical) Repeat Count
DLR (numerical) Delay Between Repeats in Sec.
MIN (numerical) Sample Meas. Duration in Min.
MIR (numerical) Background Meas. Duration in Min.
SOS (numerical) Scantime or Scans
SOT (list of values) Sample Scans or Time

0 = Scans
1 = Minutes

STR (list of values) BG Scans or Time
0 = Scans
1 = Minutes

COR (list of values) Correlation Test Mode
NO = No
LO = Around Peak,Low
HI = Around Peak,High
FUL = Full Igram length

DLY (numerical) Stabilization Delay
DEL (numerical) Delay Before Measurement
HFW (numerical) Wanted High Frequency Limit
LFW (numerical) Wanted Low Frequency Limit
RES (numerical) Resolution
RE2 (numerical) Resolution Ch.2
TDL (numerical) To do list
PLF (list of values) Result Spectrum

TR = Transmittance
AB = Absorbance
KM = Kubelka Munk
RAM = Raman Spectrum
EMI = Emission
RFL = Reflectance
LRF = Log Reflectance
ATR = ATR Spectrum
PAS = PAS Spectrum

SPO (list of values) Sample Number
0 = Background Position
1 = 1
2 = 2
.........
63 = 63

RPO (list of values) Background Number
0 = Background Position
1 = 1
2 = 2
.....

 63 = 63
WAR (list of values) Tr. Rec. Resolution

4 ns
5 ns
8 ns
10 ns
20 ns
24 ns
11–6 OPUS-NT Programming Bruker Optik GmbH

25 ns
33 ns
40 ns
50 ns
100 ns
200 ns
250 ns
400 ns
500 ns
1 µs
2 µs
2.5 µs
4 µs
5 µs
10 µs
25 µs
40 µs
50 µs
100 µs

WAS (numerical) Tr. Rec. Slices
WRC (numerical) Tr. Rec. Repeat Count
WTD (numerical) Tr. Rec. trigger Delay in points
WPD (numerical) Tr. Rec. Stab. Delay after Stepping
WXP (list of values) Tr. Rec. Trigger Mode

1 = Internal
2 = External Positive Edge
3 = External Negative Edge

WSS (list of values) Tr. Rec. Sampling Source
0 = External
1 = Linear Timescale
2 = Compress to Log. Timescale

W2W (list of values) Tr. Rec. Channel 2 Weighting
0 = Unused
1 = Use for Phase Correction
2 = Use for Weighting
3 = Use for Weighting, discard if < Threshold
4 = Discard Experiment if < Threshold

WXD (numerical) Tr. Rec. Experiment Delay
WDV (list of values) Transient Recorder

1 = PAD82A
2 = PAD82B
3 = PAD82
4 = PAD1232a
5 = PAD1232b
6 = PAD1232c

WIR (list of values) Tr. Rec. Input Range
1 = ±200mV
2 = ±500mV
3 = ±1V
4 = ±2V
5 = ±4V
6 = 0..400mV
7 = 0..1V
8 = 0..2V
Bruker Optik GmbH OPUS-NT Programming 11–7

OPUS Parameter Reference
WTH (numerical) Tr. Rec. Weighting Threshold
TRR (numerical) TRS Resolution in micro sec
TRS (numerical) TRS Slices
TRC (numerical) TRS Repeat Count
TRD (numerical) TRS Exp Delay in msec
TRP (numerical) TRS Positionning Delay
TRM (numerical) TRS Experiment Trigger Mode
TRX (numerical) TRS Sampling Source
ITS (numerical) Interleaved Time Slices
ISP (numerical) Interleave Time Res. æsec
IDL (numerical) Interleave Trigger Delay æsec
ITR (numerical) Max. Exp. Trigger Rate Hz
STD (numerical) Step Scan Pos. Delay in msec
STC (numerical) Step Scan Coadd Count
SMX (numerical) Multiplexer positions
SMD (numerical) Modulation (0=OFF 1=MOD 2=MOD-DEMOD
4=OLD
 PHASE 8=AMPL)
SMA (numerical) Scanner Modulation Amplitude
SMF (numerical) Scanner Modulation Frequency
AMF (numerical) Ampl. Modulation Frequency
ADA (numerical) Ampl. Demodulation Angle
PDA (numerical) Phase Demodulation Angle
CIN (numerical) Chrom Integrate Trace
CIM (text) Chrom Integration Method
CDT (numerical) Chrom Display Trace
CDS (numerical) Chrom Display Spectrum
CTM (numerical) Chrom Start Trigger Mode
CSV (numerical) Chrom Save Mode
CTL (numerical) Chrom Trigger Level
GSS (numerical) Gram Schmidt Size
GSO (numerical) Gram Schmidt Offset
GSP (numerical) Gram Schmidt Points
CLD (numerical) Limit Run Duration
CMD (numerical) Max Run Duration
MLS (text) Map XY List
MPO (numerical) Map Port (com 1...n)
MSH (numerical) Map Shape (1..6)
NDV (list of values) Map Device

0 = Internal (MCLStage)
1 = Microscope (MCLStage)

NOX (numerical) Map Origin X
NOY (numerical) Map Origin Y
NSX (numerical) Map Spacing X
NSY (numerical) Map Spacing Y
NGX (numerical) Map Gram Schmidt X Base
NGY (numerical) Map Gram Schmidt Y Base
MEX (text) Map Measurement Experiment
MUN (list of values) Map units

0 = Micron
1 = mm
2 = cm

MPX (numerical) Map # Pos X
MPY (numerical) Map # Pos Y
11–8 OPUS-NT Programming Bruker Optik GmbH

MSS (numerical) Map Save Spectra
MCI (numerical) Map Compute Integrals
MIM (text) Map Integration Method
MCM (numerical) Map Macro
MEM (text) Map Evaluation Macro
MSV (numerical) Map Save Video
MVM (text) Map Video Method
MRL (numerical) Map Relative Origin
MGT (numerical) Map Gram Schmidt
MGS (numerical) Map Gram Schmidt Size
MGO (numerical) Map Gram Schmidt Offset
MGP (numerical) Map Gram Schmidt Points
MXS (numerical) Meas x-Startpoint Display
MXE (numerical) Meas x-Endpoint Display
MYS (numerical) Meas y-Minimum Display
MYE (numerical) Meas y-Maximum Display
MDM (numerical) Meas Display Mode
MDP (numerical) Meas Display Product
XS2 (numerical) Meas2 x-Startpoint Display
XE2 (numerical) Meas2 x-Endpoint Display
YS2 (numerical) Meas2 y-Minimum Display
YE2 (numerical) Meas2 y-Maximum Display

FT-Parameters

Parameters used for the Fourier Transformation, that are stored together with a
spectrum:

AF2 (list of values) Apodization Function
BX = Boxcar
TR = Triangular
4P = Four Point
HG = Happ-Genzel
B3 = Blackman-Harris 3-term
B4 = Blackman-Harris 4-term
NBW = Norton-Beer, Weak
NBM = Norton-Beer, Medium
NBS = Norton-Beer, Strong
US1 = User One
US2 = User Two

HQ2 (numerical) End Frequency Limit for File
LQ2 (numerical) Start Frequency Limit for File
PH2 (list of values) Phase Correction Mode

ML = Mertz
SM = Mertz Signed
PW = Power Spectrum
MLP = Mertz / No Peak Search
SMP = Mertz Signed / No Peak Search
PWP = Power / No Peak Search

SP2 (list of values) Stored Phase Mode
NO = No

ZF2 (list of values) Zero Filling Factor
1 = 1
Bruker Optik GmbH OPUS-NT Programming 11–9

OPUS Parameter Reference
2 = 2
4 = 4
8 = 8
16 = 16
32 = 32
64 = 64
128 = 128
256 = 256
512 = 512

APF (list of values) Apodization Function
BX = Boxcar
TR = Triangular
4P = Four point
HG = Happ-Genzel
B3 = Blackman-Harris 3-Term
B4 = Blackman-Harris 4-Term
NBW = Norton-Beer, Weak
NBM = Norton-Beer, Medium
NBS = Norton-Beer, Strong
US1 = User One
US2 = User Two

HFQ (numerical) End Frequency Limit for File
LFQ (numerical) Start Frequency Limit for File
PHZ (list of values) Phase Correction Mode

ML = Mertz
SM = Mertz Signed
PW = Power Spectrum
MLP = Mertz / No Peak Search
SMP = Mertz Signed / No Peak Search
PWP = Power / No Peak Search
MS = Mertz / Stored Phase
NO = No / Save Complex Data

PHR (numerical) Phase Resolution
NLI (numerical) Non Linearity Correction
NL2 (numerical) Non Linearity Correction
DIG (numerical) Digital Filter
DI2 (numerical) Digital Filter
SPZ (list of values) Stored Phase Mode

NO = No
ZFF (list of values) Zero Filling Factor

1 = 1
2 = 2
4 = 4
8 = 8
16 = 16
32 = 32
64 = 64
128 = 128
256 = 256
512 = 512
11–10 OPUS-NT Programming Bruker Optik GmbH

Parameters of the Optics

Parameters used by the optics that are stored together with a spectrum:

IRS (numerical) Iris Aperture (micron)
UNI (text) Command string for UNI
APT (list of values) Aperture Setting, depending on the Optics
AP2 (list of values) Aperture Setting, depending on the Optics
BMS (list of values) Beamsplitter Setting, depending on the Optics
DTC (list of values) Detector Setting, depending on the Optics
DT2 (list of values) Detector Setting
OPF (list of values) Optical Filter Setting, depending on the Optics
OF2 (list of values) Optical Filter Setting, depending on the Optics
PGN (list of values) Preamplifier Gain, depending on the Optics
CHN (list of values) Measurement Channel, depending on the Optics
DMX (list of values) Multiplexed Data

1= ADC 1
2 = ADC 2
3 = ON

ADC (list of values) Ext. Analog Signals
0 = OFF
1 = 1
2 = 2
3 = 1 & 2

SON (list of values) External Synchronisation
0 = OFF
1 = ON
2 = Extended

SRC (list of values) Source Setting, depending on the Optics
VSC (numerical) Variable Velocity (Hz)
VEL (list of values) Scanner Velocity, depending on the Optics
HPF (list of values) High Pass Filter, depending on the Optics
LPF (list of values) Low Pass Filter, depending on the Optics
SRL (numerical) Raman Laser Power(mW)
RFL (numerical) Raman Flags
POL (list of values) Polarizer

91 = Out
0 = 0ø
90 = 90ø

Parameters of OPUS Functions

Parameters of the OPUS Functions, sorted by functionality. You will find
detailed information about these functions in chapter 11.

General

FIM (numerical) File name Incrementing Mode

S/N Ratio

NF1 (numerical) First S/N Frequency Limit
Bruker Optik GmbH OPUS-NT Programming 11–11

OPUS Parameter Reference
NF2 (numerical) Second S/N Frequency Limit
SN1 (numerical) S/N (RMS)
SN2 (numerical) S/N (Peak-to-Peak)
SN3 (numerical) Max. Ordinate in S/N region
SN4 (numerical) Min. Ordinate in S/N region
SNF (numerical) S/N Flags

Subtract

SX1 (numerical) Start Frequency for Autosub
SX2 (numerical) End Frequency for Autosub
SUN (numerical) Number of Spectra for Subtract
SUB (numerical) Subtract Mode

Assemble GC

QA6 (text) Assembled GC Spectrum Path
QA7 (text) Assembled GC Spectrum
QA8 (numerical) Assembled GC Start Frequency
QA9 (numerical) Assembled GC End Frequency
QAA (numerical) Assembled GC Whole x-Range
QAB (list of values) Assembled GC Z Units

SEC = Seconds
MIN = Minutes
NM = Nanometers
MI = Micrometers
MM = Millimeters
CM = Centimeters
WN = Wavenumber 1/cm
LGW = Log Wavenumber
EV = eV
PNT = Points
MIS = msec
MUS = æsec
NON = None

QAC (numerical) Assembled GC Z-Start
QAD (numerical) Assembled GC Z-End
LST (text) List of Filenames
BLK (text) Blocktype to Assemble
QM0 (list of values) Assembled Map Units

MI = Micrometers
MM = Millimeters
CM = Centimeters
PNT = Points

QM1 (numerical) Assembled Map x points
QM2 (numerical) Assembled Map Delta x
QM3 (numerical) Assembled Map y points
QM4 (numerical) Assembled Map Delta y

Conformity Test

QCF (text) Conform. Test Methd. Path
QCG (text) Conform. Test Methd. File
CSM (text) CSM Method name
11–12 OPUS-NT Programming Bruker Optik GmbH

Post-FT ZFF

PZF (numerical) Post Zerofill Factor
PZS (numerical) Post Zf Start Frequency
PZE (numerical) Post Zf End Freqency
PWR (numerical) Post Zf Whole Range (0: no; 1: yes)

Fourier Transformation

FHZ (list of values) FT Phase Correction Mode
ML = Mertz
SM = Mertz Signed
PW = Power Spectrum
MS = Mertz / Stored Phase
NO = No / Save Complex Data
FM = Forman
FS = Forman / Stored Phase
FP = Forman / Preapodized
DP = Doubled Phase

FTA (list of values) FT Apodization Function
BX = Boxcar
TR = Triangular
4P = Four point
HG = Happ-Genzel
B3 = Blackman-Harris 3-Term
B4 = Blackman-Harris 4-Term
NBW = Norton-Beer, Weak
NBM = Norton-Beer, Medium
NBS = Norton-Beer, Strong
US1 = User One
US2 =User Two

FZF (list of values) FT Zero Filling Factor
1 = 1
2 = 2
4 = 4
8 = 8
16 = 16
32 = 32
64 = 64
128 = 128
256 = 256
512 = 512

FTS (numerical) FT Start Frequency
FTE (numerical) FT End Freqency
FTR (numerical) FT Resolution Limit
FHR (numerical) FT Phase Resolution
FLR (numerical) FT Limit Resolution
FTT (numerical) FT to do list
FBW (numerical) Forward/Backward Igram
FNL (numerical) Non Linearity Correction
FNC (numerical) FT Detector Cutoff Freq.
FNE (numerical) FT Modulation Efficiency
FSM (list of values) FT ZPD Search Mode
Bruker Optik GmbH OPUS-NT Programming 11–13

OPUS Parameter Reference
AL = Absolute largest Value
MX = Maximum
MN = Minimum
MI = Mid between Min/Max
NO = No Peak Search
MA = Manually
TW = Mid between largest two
TP = Take from stored Phase

FPP (numerical) ZPD Position
FSR (numerical) ZPD Search Range
FSY (numerical) FT Symmetry

Kramers-Kronig Transformation

KKS (numerical) KKT Start Frequency
KKE (numerical) KKT End Freqency
KWR (numerical) KKT Whole Range
KMT (numerical) KKT material (extrapol + cond/not cond)
KKR (numerical) KKT result

Deconvolution

DEF (numerical) Deconvolution Factor
DNR (numerical) Deconv Noise Reduction
DES (numerical) Deconv Start Frequency
DEE (numerical) Deconv End Frequency
DWR (numerical) Deconv Whole Range
DSP (list of values) Deconv Line Shape

LO = Lorentz
GA = Gauss

Curve Fitting

FXS (numerical) FIT Start Frequency
FXE (numerical) FIT End Frequency
FWR (numerical) FIT Whole Range

Inverse FT

RXS (numerical) Reverse FT Start Frequency
RXE (numerical) Reverse FT End Frequency
RWR (numerical) Reverse FT Whole Range
RSY (numerical) Reverse FT Symmetry

Symmetric FT

FPS (numerical) Symmetric FT First Point
LPS (numerical) Symmetric FT Last Point
WRS (numerical) Symmetric FT Whole Range
SSY (numerical) Symmetric FT Symmetry
11–14 OPUS-NT Programming Bruker Optik GmbH

2D Correlation

2DM (list of values) Correlation Mode
SQ = Squared Correlation
RG = Regression
CO = Correlation
SY = Synchron
AS = Asynchron

2XS (numerical) 2D X Start Frequency
2XE (numerical) 2D X End Frequency
2WR (numerical) 2D Whole X Range
2YS (numerical) 2D Y Start Frequency
2YE (numerical) 2D Y End Frequency
2WY (numerical) 2D Whole Y Range
2DR (numerical) 2D Digital Resolution
2DF (numerical) 2D Reduction Factor

DMA Extraction

DMA (numerical) DMA extraction mode
DMF (numerical) DMA frequency of strain (Hz)
DMP (numerical) DMA phase of strain
DMS (numerical) DMA additional phase shift

Smoothing, Derivative

QSP (numerical) Number of Smoothing Points
QOD (numerical) Order of Derivative

Compare Spectra

QFX (numerical) Lower Compare Frequency Range
QLX (numerical) Upper Compare Frequency Range
QWR (numerical) Whole x-Range (0: no; 1: yes)

Identitity Test

QFB (text) Identity Test Methods
QFC (text) Method name
QFD (numerical) Use AQP Flag (0: No; 1: Yes)
QFE (numerical) Check Best Hit (0: No; 1: Yes)
QFF (numerical) Expected Reference ID
QFH (numerical) 1st SNM char. for check
QFI (numerical) Length of SNM part for check
QFJ (numerical) Ident: 0: Analy; 1: Add List; 2: Rem. All
QFK (text) Ident: Path of Fl. to be Added
QFL (text) Ident: Name of Fl. to be Added
QI0 (numerical) Ident: BlockID of Fl. to be Added
QI1 (list of values) Sort for Expected Reference

SNM = Sample Name
ID = ID
FIL = File Name
Bruker Optik GmbH OPUS-NT Programming 11–15

OPUS Parameter Reference
QI2 (numerical) 1st SNM Char. for Sorting
QQN (binär) QIdnt XRanges
QQO (binär) QIdnt Deriv

Cluster Analysis

QCA (text) Method Path
QCB (text) Method Name
QCH (text) text-List Path
QCI (text) text-List Name (incl. Ext.)
QCJ (list of values) Print/Plot

NO = No
DEN = Dendrogram
DIA = Diagnosis
BOT = Both

QCK (list of values) For Making Dendro
FIL = File Name
SNM = Sample Name
NUM = File Number
NO = No Name Markers

QCL (numerical) # of Classes (for Diagn.)

Peak Picking

FXP (numerical) Peak Pick Start Frequency
LXP (numerical) Peak Pick End Frequency
QP0 (list of values) Precision User-Defined

NO = No
YES = Yes

QP3 (numerical) Digits After Decimal Point
QP4 (list of values) Upper Peak Limit

NO = No
YES = Yes

QP5 (numerical) Peaks < [%]
QP6 (list of values) Upper Peak Limit Abs.

NO = No
YES = Yes

QP7 (numerical) Peaks < [abs.]
QP8 (list of values) Lower Peak Limit Abs.

NO = No
YES = Yes

QP9 (numerical) Peaks > [abs.]
PTR (numerical) Peaks > [%]
PPM (numerical) Peak Pick Mode (Auto,Max,Min)
NSP (numerical) Number of Smoothing Points
PSM (numerical) Peak Search Method
WHR (numerical) Whole x-Range (0: no; 1: yes)

Black Body

QTE (numerical) New Entries
QPH (numerical) 0:Energy; 1:Photons
11–16 OPUS-NT Programming Bruker Optik GmbH

Raman Correction

QC0 (numerical) 1: Raman Background Correction
QC1 (numerical) 1: Raman Scattering Correction
QC2 (numerical) 1: Undo Correction
QC3 (text) Calibration Lamp Spectrum Path
QC4 (text) Calibration Lamp Spectrum
QC5 (numerical) Temp. of Calibration Lamp

Averaging

QA0 (numerical) 1: Consider Scans
QA1 (numerical) 1: Normalized Spectra
QA2 (numerical) 1: Average Report
QA3 (text) Av. Spectrum Path
QA4 (text) Av. Spectrum
QA5 (numerical) 1: Add to List in Ident Method
QAE (list of values) Create Std-Dev Spectrum

NO = No
YES = Yes

QAF (list of values) Update Av. Spectrum
NO = No
YES = Yes

QAG (text) Updated Av. Spectrum Path
QAH (text) Updated Av. Spectrum
QAL (list of values) Av.: Source of Orig. Spectra

LIS = File List
FIL = File Name

QAM (text) Av: Orig. Spectra Path
QAN (text) Av: Orig. Spectra
QAO (numerical) Av: Orig. Spectra Block ID
QD0 (numerical) 1: New Entries

Quality Test

QQ0 (numerical) x-Start (x range 0)
QQ1 (numerical) x-End (x range 0)
QQ2 (numerical) ymax-ymin(x range 0) must be >
QQ3 (numerical) ymax-ymin(x range 0) must be <
QQ4 (numerical) x-Start (x range 1)
QQ5 (numerical) x-End (x range 1)
QQ6 (numerical) x-Start (x range 2)
QQ7 (numerical) x-End (x range 2)
QQ8 (numerical) x-Start (x range noise)
QQ9 (numerical) x-End (x range noise)
QQA (numerical) y’max (x range noise) must be <
QQB (numerical) S/Noise (x range 1) must be >
QQC (numerical) S/Noise (x range 2) must be >
QQD (numerical) x-Start (x range water)
QQH (numerical) x-End (x range water)
QQE (numerical) y’max (x water) must be <
QQF (numerical) S/Water (x range 1) must be >
QQG (numerical) S/Water (x range 2) must be >
Bruker Optik GmbH OPUS-NT Programming 11–17

OPUS Parameter Reference
QQI (numerical) x-Start (x range fringes)
QQJ (numerical) x-End (x range fringes)
QQK (numerical) y’max (x fringes) must be <
QQL (text) Q-Test Method Path
QQM (text) Q-Test Method Name

2D Correlation

QC6 (numerical) 2D-Corr. Whole x-Range
QC7 (numerical) 2D-Corr. Start Frequency
QC8 (numerical) 2D-Corr. End Frequency
QC9 (list of values) 2D-Corr. Limit Resolution

NO = No
YES = Yes

QCC (numerical) 2D-Corr. Reduction Factor
QCD (list of values) 2D-Corr. Synchronous

NO =No
YES = Yes

QCE (list of values) 2D-Corr. Asynchronous
NO = No
YES = Yes

Display Limits

XSP (numerical) Left X Display Limit
XEP (numerical) Right X Display Limit
YMN (numerical) Lower Y Display Limit
YMX (numerical) Upper X Display Limit
XAU (list of values) X - Axis Scaling

NO = Linear
YES = Compressed

Normalization

NME (numerical) Method (1: Min-Max, 2: Vector, 3: Offset)
NFX (numerical) First Point
NLX (numerical) Last Point
NWR (numerical) Whole Range (0: no, 1: yes)

Frequency Calibration

QF0 (list of values) Restore Orig. Calib.
NO =No
YES = Yes

MWC (numerical) Mult. for Freq.Calib
AWC (numerical) Add for Freq.Calib

Baseline Correction

BME (numerical) Baseline Method
BCO (numerical) Exclude CO2 - Bands
BPO (numerical) Number of Baseline Points
11–18 OPUS-NT Programming Bruker Optik GmbH

Make Compatible

CME (numerical) Method (2: Interpolation, 3: Reduce Resolution)

AB → TR

CCM (numerical) Method

Spectrum Calculator

CDI (numerical) Permanent Dialog
FOR (text) Formula

Cut

CFX (numerical) First Point
CLX (numerical) Last Point

Generate Straight Line

GFX (numerical) First Point
GLX (numerical) Last Point

Convert Spectra

CSD (numerical) Method

CarbOx Analysis

FFO (numerical) Factor for Oxygen
FFC (numerical) Factor for Carbon
FME (numerical) Carbox Method
FUN (numerical) Units
FRT (numerical) Reference Wafer Thickness
FST (numerical) Wafer Thickness
FSI (numerical) Free Carrier Type
FCN (numerical) Charge Carrier Concentration
FOF (numerical) Offset
FSL (numerical) Slope
FCO (numerical) Oxygen Conversion Coefficient
FCC (numerical) Carbon Conversion Coefficient

Epi Analysis

EFX (numerical) First Point
ELX (numerical) Last Point
EWR (numerical) Whole Range (0: no, 1: yes)
EMO (numerical) Mode
EN1 (numerical) Refraction Index n1
EN2 (numerical) Refraction Index n2
EN3 (numerical) Refraction Index n3
ES1 (numerical) Sign first echo-peak
ES2 (numerical) Sign second echo-peak
Bruker Optik GmbH OPUS-NT Programming 11–19

OPUS Parameter Reference
cm-1 → µ

LNE (numerical) New Entry (cm-1/micron)
LME (numerical) Method (cm-1/micron)
LYS (numerical) Y scale (cm-1/micron)
LCF (numerical) Max. Compression Factor
QL0 (numerical) Whole x-Range (0: no; 1: yes)
QL1 (numerical) Lower Compare Frequency Range
QL2 (numerical) Upper Compare Frequency Range
QL3 (numerical) Data Points

Integration

LPT (text) Integration Method Path
LFN (text) Method Filename
LRM (numerical) Integration Report Storage Mode

Quant

QPT (text) File List Path
QFN (text) File List Name
QP1 (text) Quant 1 Method Path
QF1 (text) Quant 1 Method
QP2 (text) Quant 2 Method Path
QF2 (text) Quant 2 Method
CAP (text) Unscrambler Model Path
CAF (text) Unscrambler Model Name
GAP (text) PLSplus/IQ Calibration File Path
GAF (text) PLSplus/IQ Calibration File Name
HEV (numerical) Extract Vol [ml]
HWV (numerical) Water Vol [l]
HCT (numerical) Cell Thickness [cm]
HDF (numerical) Dilution Factor
HAR (numerical) Aromatics
QSM (numerical) No of Smoothing Points
FLC (numerical) F Prob Limit Concentration Outliers
FLS (numerical) F Prob Limit Spectral Outliers
LLF (numerical) Leverage Limit Factor
QPP (numerical) Quant 2 Preprocessing Options

Plot Report Parameters

GMS (numerical) Marker Size
GMA (numerical) Marker Symbol small circle
GMC (numerical) Marker Color CLR_NEUTRAL
GXS (numerical) Frame X Position 3 cm
GYS (numerical) Frame Y Position 2 cm
GDX (numerical) Frame dx 12 cm
GDY (numerical) Frame dy 12 cm
11–20 OPUS-NT Programming Bruker Optik GmbH

Info Parameters, JCAMP Setup

INP (text) Info text Path
IFP (text) Correlation Table Path
INM (text) Info Definition Filename
IFN (text) Info Definition Filename
IDS (text) Info Definition Description

Macro Parameters

MPT (text) Macro Path
MFN (text) Macro Filename
MDS (text) Macro Description

GRAMS Export

GMN (text) Macro Filename
GMD (text) Macro Description

Data Path Parameters

WOP (text) Work File Path
DAP (text) Data File Path
FMP (text) File Manager Path
DAF (text) initial filename for load
QL4 (numerical) Filter Index

Parameters for Post-Run Extraction

EXS (numerical) Extract from start of file
EXE (numerical) Extract to end of file
ENT (numerical) Entry to extract from
ENE (numerical) Entry to extract to
ECO (numerical) Coadd all to one
XTP (text) Extract Path
XTN (text) Extract Filename
XTI (numerical) Increment Name (1=Name 0=Ext)
COL (numerical) Spectra Color
EAB (numerical) Abort extraction if file exists
ELF (numerical) Load extracted files

Simulation

SXS (numerical) Simul Start Frequency
SXE (numerical) Simul End Frequency
SLA (numerical) Simul Angle Degrees
SER (numerical) Simuls Epsilon Re[]
SEI (numerical) Simuls Epsilon Im[]
SFP (numerical) Simuls Plasma Frequency
SFS (numerical) Simuls Scatter Frequency
SVA (numerical) Simuls Valence A
SVB (numerical) Simuls Valence B
Bruker Optik GmbH OPUS-NT Programming 11–21

OPUS Parameter Reference
SVC (numerical) Simuls Valence C
SVG (numerical) Simuls Energy Gap
SZL (numerical) Simuls Lattice Count
SWR (numerical) Simul Whole Range
SXP (numerical) Simul Points
SLI (numerical) Simul Light From
SLP (numerical) Simul Polarization
SRI (numerical) Simul Extract DF Re/Im
SFV (numerical) Simul DF Values Flag
SPC (numerical) Simuls Coherence
SDL (numerical) Simuls Lattice
SDF (numerical) Simuls Free Carriers
SDV (numerical) Simuls Valence Electrons
SCQ (list of values) Simul Computed Quantity

ABS = Absorbance
REF = Reflectance
TRA = Transmittance
RRK = Amplitude Reflectivity Coefficient
RTK = Amplitude Transmission Coefficient

SPT (list of values) Simuls Type
HOM = Homogenious
IHO = Inhomogenious

SPD (text) Simul Layer Density
SLS (text) Simul Layer Stack
SDP (text) Simul Layer DF
SDE (text) Simul Extract DF
SDD (text) Simul Layer DF File
SLF (text) Simul Layer Stack File

Extrapolation

QX0 (numerical) Extrapol R (0)
QX1 (numerical) Extrapol R (inf.)
QX2 (numerical) Extrapol i1
QX3 (numerical) Extrapol i2
QX4 (numerical) Extrapol ny end

Trace Calculation

QT0 (list of values) Trace Cal.: Peak Integrals
NO = No
YES = Yes

QT1 (list of values) Trace Cal.: Trace Points by Macro
NO = No
YES = Yes

QT2 (text) Trace Cal.: Macro Path
QT3 (text) Trace Cal.: Macro Filename

x Point Adaption

QAI (numerical) Adapting: New Entries
QAJ (text) Adapting: Method Path
QAK (text) Adapting: Method Name
11–22 OPUS-NT Programming Bruker Optik GmbH

Manipulate GC Blocks

QM5 (text) Manip. GC: Macro Path
QM6 (text) Manip. GC: Macro Filename
LB0 (text) Defaults for Load Box
RS1 (text) Function Result

Parameter for the Library Search

LBN (text) Library Name
LB1 (text) Library List
LBP (text) Library Path
LBT (text) Info textfile Name
LTP (text) Path for Library text Definitions
LMT (text) Method File Name
MTP (text) Path for Library Method Definitions
LMN (numerical) Method ID
LMO (numerical) Library Edit Mode
LSM (numerical) Library Store Mode
LBS (numerical) Spectrum Number
LSS (numerical) Search Sensitivity
LPR (numerical) Library Protection
LCP (text) Copyright Note
LP1 (numerical) Password Read
LP2 (numerical) Password Write
SSQ (numerical) Minimum HQ for Spectrum Search
SSH (numerical) Maximum Hits for Spectrum Search
SS1 (numerical) Spectrum Search Algorithm
SIH (numerical) Maximum Hits for Info Search
SPQ (numerical) Minimum HQ for Peak Search
SPH (numerical) Maximum Hits for Peak Search
STH (numerical) Maximum Hits for Structure Search
SPA (numerical) Peak Search Algorithm
LID (text) Library Description
LAL (numerical) Structure Search Algorithm
SIN (text) Info Query Name
SIP (text) Info Query Path
PNP (text) Peak Query Name
PPP (text) Peak Query Path
MPP (numerical) Show Search Report immediately
RNG (text) Excluded Ranges File

Temperature Control

TWK (numerical) Temperature work for thread
TPO (numerical) Temperature Port (com 1...n)
TPD (numerical) Use Com Defaults
TMP (numerical) Temperature
TCS (text) Temperature Command String
TDV (list of values) Temperature Control Device

0 = Eurotherm 800 Series
1 = Lake Shore 320
2 = Linkam 93 Series
3 = Eurotherm 2000 Series
Bruker Optik GmbH OPUS-NT Programming 11–23

OPUS Parameter Reference
Rapid Scan TRS

RAT (text) TRS Method name

Communication Parameters

You will find parameters used for data output etc. listed in chapter 10.

JCAMP Parameters

JCC (list of values) Generate JCAMP-DX Compound Files
 1 = Yes
 0 = No

ORP (list of values) Ordinate Precision
32 = 32 Bit
16 = 16 Bit

JDT (list of values) JCAMP-DX Data Type
PAC = Packed
SQD = Squeezed/Dup
DD = Difference/Dup

Save, Save As, Send File

COF (numerical) Copy Flags
OEX (list of values) Overwrite Existing Files

 1 = Yes
 0 = No

REN (text) New File Name
SAN (text) ’Save As’ File Name
DAP (text) Data File Path

Read Datapoint Table

DFN (text) File Name (Data Point Table)
XCO (numerical) x Column (Data Point Table)
YCO (numerical) y Column (Data Point Table)
OE1 (list of values) Overwrite (Data Point Table)

1 = Yes
0 = No

SOX (list of values) Sort X Values (Data Point Table)
1 = Yes
0 = No

QD1 (numerical) Max. Number of Data Points
QD2 (numerical) 1st Data Point Line

Write Datapoint Table

DPA (numerical) Decimal Places, Abscissa
DPO (numerical) Decimal Places, Ordinate
SEP (text) Separator
ADP (list of values) All Data Points

1 = Yes
11–24 OPUS-NT Programming Bruker Optik GmbH

0 = No
YON (list of values) y Values only

1 = Yes
0 = No

DBT (numerical) Data Block Type

External Program

XPF (numerical) Run as Opus Task
XST (numerical) Start Server
XPR (text) Program Name
XPA (text) Parameters
XWI (numerical) Run in a Window
XWS (numerical) Window Size Option
XCW (numerical) Close Window on Exit
XSB (numerical) Start in Background
XEM (numerical) Windows Enhanced Mode
XDM (text) VDM Settings Filename
XVP (numerical) View Transactions
DDE (numerical) DDE Interaction
DDS (text) DDE Server Name
DDT (text) DDE Topic
DDI (text) DDE Item
DDD (text) DDE Data
VBS (text) VB Script Name
VBP (text) Script Parameters
VBW (numerical) Wait for Script

Pipe Parameters

PIN (text) Pipe Name
PIS (text) Pipe String
PIF (numerical) Pipe Flags
CO1 (numerical) COMmunication Flags
CO2 (numerical) Separator/Terminator Bytes for COMmunication
CO3 (numerical) Byte Count for COMmunication
CFI (text) COMmunication Output File
COT (text) COMmunication Output text
TIO (numerical) Timeout

Plot Parameters

Parameters used to plot data.

PUN (list of values) units (cm / inch)
CM = cm
IN = inch

PL0 (numerical) Peak Label Size
LFO (text) Peak Label Font
PL1 (numerical) Option Flags
PL2 (numerical) ’n’ Strongest Peaks to Label
PL3 (numerical) Decimals for Label Numbers
Bruker Optik GmbH OPUS-NT Programming 11–25

OPUS Parameter Reference
PL4 (numerical) Length Stroke 0 - 1
PL5 (numerical) Length Stroke 1 - 2
PL6 (numerical) Length Stroke 2 - 3
PL7 (numerical) Distance Peak <--> Line
PL8 (numerical) Peak Stroke Length
LGO (list of values) BRUKER Logo

NO = No
 YES = Yes
PDV (text) Plot Device
SCP (text) Script Path
SCN (text) Script Name
PRP (numerical) Printer Port (LPTn)
LPP (numerical) Lines per Page
POP (text) Plot & Print Output Path
POF (text) Plot & Print Output File Name
PLO (text) Print Log File Name
PF1 (numerical) Plot Option Flags
PFI (numerical) First Item Printed
PLI (numerical) Last Item Printed
PRF (numerical) Print Option Flags
PPA (text) Polyline Parameters
PWO (text) Plot WYSIWYG Options
PDH (numerical) Plot Dialog Window Handle
PTX (text) Print text
PLP (text) Print Log Position on Screen
PRN (text) Print Device
MLW (numerical) Minimum Spectrum Line Width in Plot
COS (text) Color Settings in Plot
M00 (text) Plot Message # 0
M01 (text) Plot Message # 1
M02 (text) Plot Message # 2
M03 (text) Plot Message # 3
M04 (text) Plot Message # 4
M05 (text) Plot Message # 5
M06 (text) Plot Message # 6
M07 (text) Plot Message # 7
M08 (text) Plot Message # 8
M09 (text) Plot Message # 9
11–26 OPUS-NT Programming Bruker Optik GmbH

Overview of Available Functions
12 The C/S-Interpreter and its

Commands
The Client/Server Interpreter is the module of OPUS responsible for processing
commands received through the Pipe-, DDE- or Scripting interface. Therefore,
the list of commands is the same for all three interfaces.

The following chapters mainly address users who intend to write their own pro-
grams and link them to OPUS or OPUS macros. This is achieved with the
OPUS command External Program, which was described earlier. In the fol-
lowing we expect the user to be familiar with this command and its options.

A part of these commands was already available under OPUS OS/2 in form of
the Client/Server function. Hence, in the following the commands are divided
in old and new ones.

12.1 Overview of Available Functions

Currently, you can use a client program to:

• read data from OPUS spectrum files and 3D files; you can either read
the whole frequency region or select a part of interest from the data.

• write data to OPUS spectrum files and 3D files; you can either write
the whole frequency region or select a part of interest from the data.

• load and unload OPUS files.

• read file information from the Client/Server file list.

• read OPUS parameters from an OPUS file.

• save OPUS parameters to an OPUS file.

• read data from report blocks.

• start OPUS macros.

• exchange parameters with an OPUS macro.

In addition, all functions of the command line, i.e. all OPUS processing func-
tions are supported, according to the syntax described earlier.

12.2 Commands and Command Syntax

In the following you find a list containing all Client/Server commands. The
description of all commands is structured in the same manner:
Bruker Optik GmbH OPUS-NT Programming 12–1

The C/S-Interpreter and its Commands
Syntax:

The name of the command and the syntax that has to be applied. Mandatory
exchange parameters are indicated with „< >“, optional parameters are enclosed
in square brackets „[]“.

Description:

A description of the action performed by the command.

Return Value:

A list of the possible return values.

Return Value 2:

Return Value 3:

Some commands return additional text after confirming the execution with OK;
in this case they must be read.

Errors:

A list of possible error messages.

Comments:

Notes and further comments about the command.

12.3 Old C/S Commands

These commands have been available already in OPUS-OS/2.

12.3.1 Overview

The following commands are still used by OPUS-NT:

TIMEOUT sets the maximum wait time
CLOSE_PIPE closes pipe
OVERWRITE activates overwrite mode
PRESERVE deactivates overwrite mode
COUNT_ENTRIES counts entries of the file input list
READ_FROM_ENTRY sets the entry number and data block
WRITE_TO_ENTRY sets the entry number and data block for writing
READ_FROM_FILE selects file for reading
WRITE_TO_FILE selects file for writing
READ_FROM_BLOCK specifies the data block for reading
WRITE_TO_BLOCK specifies the data block for writing
12–2 OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands
ASCII sets data point mode to text
BINARY sets data point mode to binary
DATA_VALUES sets data point mode to frequencies
DATA_POINTS sets data point mode to data points
READ_HEADER reads spectrum header
READ_DATA reads spectral data
WRITE_HEADER writes spectrum header
WRITE_DATA writes spectral data
COPY_DATA copies spectrum block
LOAD_FILE loads a file
UNLOAD_FILE unloads a file
START_MACRO runs a macro
FILE_PARAMETERS sets parameter mode to spectrum parameters
OPUS_PARAMETERS sets parameter mode to OPUS parameters
READ_PARAMETER reads parameters

12.3.2 CLOSE_PIPE

Syntax:

“CLOSE_PIPE”

Description:

Closes the pipe connection.

Return Value:

“OK”

Comment:

Although it is not strictly required, this command should be send if no further
communication with OPUS is necessary. The corresponding program pipe will
be closed by OPUS and the resources returned.

12.3.3 COUNT_ENTRIES

Syntax:

“COUNT_ENTRIES”

Description:

Returns the number of data blocks that have been selected in the Select File dia-
log of the External Program function.

Return Value:

“OK”
Bruker Optik GmbH OPUS-NT Programming 12–3

The C/S-Interpreter and its Commands
Return Value 2:

<Number of data blocks>

Comment:

This command ensures that all files or data blocks selected in the Select File
dialog of the External Program function can be accessed.

12.3.4 READ_FROM_ENTRY

Syntax:

“READ_FROM_ENTRY <Number>”

Description:

This command specifies the data block accessed by the READ_DATA com-
mand.

Return Value:

“OK” or error message.

Error:

“Syntax: READ_FROM_ENTRY <Number>”

“Entry number out of range”

Return Value 2:

<Complete path of the OPUS file>

<File number>

<Data block name>

Comment:

The argument to this command is the number of an entry in the Client/Server
file list (between 1 and the number returned from the COUNT_ENTRIES com-
mand), from which the client program intends to read. If no error occurs, the
complete file name (including drive and path), as well as the data block name of
the selected file in text format will be returned as the second return value. The
format of the data block name is identical to the one used in the history function.

The file name returned by the command is hyphenated and followed by the
number of the copy (clonecount) for further use with the command line.
12–4 OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands
12.3.5 WRITE_TO_ENTRY

Syntax:

“WRITE_TO_ENTRY <Number>”

Description:

This command specifies the data block accessed by the WRITE_DATA com-
mand.

Return Value:

“OK” or error message.

Error:

“Syntax: WRITE_TO_ENTRY <Number>”

“Entry number out of range”

Return Value 2:

<Complete path of the OPUS file>

<File number>

<Data block name>

Comment:

The argument to this command is the number of an entry in the Client/Server
file list (between 1 and the number returned from the COUNT_ENTRIES com-
mand). If no error occurs, the complete file name (including drive and path), as
well as the name of the data block in text format will be returned as the second
return value. The name of the data block is returned in the same format used in
the history function.

The file name returned by the command is hyphenated and followed by the
number of the copy (clonecount) for further use with the command line.

12.3.6 READ_FROM_FILE

Syntax:

“READ_FROM_FILE <Filename> or <File number>”

Description:

Specifies the OPUS file from which the client program intends to read. The
Bruker Optik GmbH OPUS-NT Programming 12–5

The C/S-Interpreter and its Commands
argument to this command is the file name which can be specified with or with-
out hyphens. Optionally, the clonecount can be stated. If the file was already
loaded in OPUS using this name (including the correct clonecount), this copy
will be used. Otherwise, the file will automatically be loaded. For reasons of
compatibility to OPUS-OS/2 the file can still be accessed via an internal file
number, but this number is no longer limited to the region between 1 to 699.

Return Value:

“OK” or error message.

Error:

“Syntax: READ_FROM_FILE <File name> or <File number>”

“File not Found”

Return Value 2:

<Complete path of the OPUS file>

<File number>

Comment:

Specifies the OPUS file from which the client program intends to read. This
command is only able to select a file; the READ_FROM_BLOCK command
must subsequently be used to specify the data block in the file, from which to
read.

The error message „File not Found“ can have multiple causes. In general, it
indicates an error while accessing the file.

The file name returned by the command is hyphenated for further use in the
command line and is followed by the number of the copy (clonecount).

12.3.7 WRITE_TO_FILE

Syntax:

“WRITE_TO_FILE <File name> or <File number>”

Description:

Specifies the OPUS file to which the client program intends to write. The argu-
ment to this command is the file name which can be specified with or without
hyphens. Optionally, the clonecount can be stated. If the file was already
loaded in OPUS using this name (including the correct clonecount), this copy
will be used. Otherwise, the file will automatically be loaded. For reasons of
12–6 OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands
compatibility to OPUS-OS/2 the file can still be accessed via an internal file
number, but this number is no longer limited to the region between 1 to 699.

Return Value:

“OK” or error message.

Error:

“Syntax: WRITE_TO_FILE <File name> or <File number>”

“File not Found”

Return Value 2:

<Complete path of the OPUS file>

<File number>

Comment:

Specifies the OPUS file to which the client program intends to write. This com-
mand is only able to select a file; the WRITE_TO_BLOCK command must sub-
sequently be used to specify the data block in the file to which to write.

The error message „File not Found“ can have multiple causes. In general, it
indicates an error while accessing the file.

The file name returned by the command is hyphenated for further use in the
command line and is followed by the number of the copy (Clonecount).

12.3.8 READ_FROM_BLOCK

Syntax:

“READ_FROM_BLOCK <Block name>”

Description:

Specifies the data block from which the client program intends to read. The
command always refers to the file that was last specified with the
READ_FROM_ENTRY or the READ_FROM_FILE command.

Return Value:

“OK” or error message.

Error:

“Syntax: READ_FROM_BLOCK <Block name>”
Bruker Optik GmbH OPUS-NT Programming 12–7

The C/S-Interpreter and its Commands
“No Filename or Filenumber defined”

“Unknown blocktype”

“Block not found”

Comment:

The argument to the command is the block type which is also used in reports i.e.
“AB” for an absorption spectrum, “TR/Multiple” for a transmission block of a
3D file. The command will only be accepted if it was preceded by either the
READ_FROM_ENTRY or the READ_FROM_FILE command.

12.3.9 WRITE_TO_BLOCK

Syntax:

“WRITE_TO_BLOCK <Block name>”

Description:

Specifies the data block from which the client program intends to write. The
command always refers to the file that was last specified with the
WRITE_TO_ENTRY or the WRITE_TO_FILE command.

Return Value:

“OK” or error message.

Error:

“Syntax: WRITE_TO_BLOCK <Block name>”

“No Filename or Filenumber defined”

“Unknown blocktype”

“Block not found”

Comment:

The argument to the command is the block type which is also used in reports,
i.e. “AB” for an absorption spectrum, “TR/Multiple” for a transmission block
of a 3D file. The command will only be accepted if it was preceded by either
the WRITE_TO_ENTRY or the WRITE_TO_FILE command.
12–8 OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands
12.3.10 ASCII

Syntax:

“ASCII”

Description:

Sets the transfer mode used to transfer data points to ASCII.

Return Value:

“OK”

Comment:

If this mode is chosen (default mode) all data points will be transferred as
ASCII text. Each data point is followed by an End of Line sequence.

12.3.11 BINARY

Syntax:

“BINARY”

Description:

Sets the transfer mode used to transfer data points to BINARY.

Return Value:

“OK”

Comment:

If this mode is chosen, all data points will be transferred as 4 byte IEEE float-
ing-point number (REAL*4 in FORTRAN, FLOAT in C). In this mode, the
data points will not be terminated. Therefore, the number of bytes transferred is
N*4, N being the total number of transferred data points. This mode is faster
than the ASCII mode.

12.3.12 DATA_VALUES

Syntax:

“DATA_VALUES”

Description:

The parameters of the READ_HEADER, READ_DATA and COPY_DATA
Bruker Optik GmbH OPUS-NT Programming 12–9

The C/S-Interpreter and its Commands
will be interpreted as frequency values.

Return Value:

“OK”

12.3.13 DATA_POINTS

Syntax:

“DATA_POINTS”

Description:

The parameters of the READ_HEADER, READ_DATA and COPY_DATA
will be interpreted as data points.

Return Value:

“OK”

Comment:

The data point numbering starts with ,,1”. Floating-point numbers are always
rounded to the next lower integer (e.g. 14.965 will be rounded to 14).

12.3.14 READ_HEADER

Syntax:

“READ_HEADER [<X1>[-<X2>] [<Z1>[-<Z2>]]”

Description:

Reads the header of a spectrum block and returns the frequency range of the
spectrum. Several options are available.

Return Value:

“OK” or error message.

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Error Reading File”

“Not implemented”
12–10 OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands
Return Value 2:

In case of regular spectrum blocks:

<Number of data points (NX = XL - XF + l) in region X>

<Frequency of the first data point in region X>

<Frequency of the last data point in region X>

Return Value 2:

In case of 3D spectrum blocks:

<Number of data points (NX = XL - XF + I) in region X>

<Frequency/number of the first data point in region X>

<Frequency/number of the last data point in region X>

<Number of spectra (NZ = ZL - ZF + 1) in region Z>

<Value (e.g. time) of the first spectrum in region Z>

<Value (e.g. time) of the last spectrum in region Z>

Note:

The output will always be returned as ASCII text, separated by an End of Line
sequence, regardless of the selected data transfer mode.

Comment:

Up to four parameters can be forwarded as command arguments.

<X1>, <X2> define the frequency region of the spectrum block. If <X2> is not
explicitly stated, only one data point in the vicinity of <X1> will be returned. If
no parameters are specified or if <X1> was set to ,,* ”, all data stored in the
spectrum block will be returned.

<Z1>, <Z2> define the region of the Z axis for which data will be returned (only
for 3D files). If <Z2> is not specified, only data in the vicinity of <Z1> will be
returned. If no parameters are specified or if <Z1> was set to ,,*”, all data
stored in the spectrum block will be returned. In the case of regular spectrum
blocks, the parameters <Z1> and <Z2> will be ignored and do not cause an
error message in case they have been stated.

All four parameters can either be entered as integer or as floating-point number
and will be interpreted either as frequencies or as data points, depending on the
settings (see the DATA_VALUES and DATA_POINTS commands).
Bruker Optik GmbH OPUS-NT Programming 12–11

The C/S-Interpreter and its Commands
12.3.15 READ_DATA

Syntax:

“READ_DATA [<X1>[<X2>]] [<Z1>[-Z2]]”

Description:

Reads the header and data points of a spectrum block within the limits indi-
cated. The parameters of the command are similar to the parameters of the
READ_HEADER command.

Return Value:

“OK” or error message.

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Error Reading File”

“Not implemented”

Return Value 2:

In case of regular spectrum blocks:

<Number of data points (NX = XL - XF + l) in region X>

<Frequency of the first data point in region X>

<Frequency of the last data point in region X>

<Scaling factor for Y values>

<Y(XF)>, <Y(XF + 1)>, <Y(XF + 2)> ...<Y(XL)>

“OK” or “Error Reading File”

Return Value 2:

In case of 3D spectrum blocks:

<Number of data points (NX = XL - XF + 1) in region X>

<Frequency/number of the first data point (XF) in region X>

<Frequency/number of the last data point (XL) in region X>
12–12 OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands
<Number of spectra (NZ = ZL - ZF + 1) in region Z>

<Value (e.g. time) of the first spectrum in region Z>

<Value (e.g. time) of the last spectrum in region Z>

<Scaling factor for Y values> for Z = ZF

<Y(XF)>, <Y(XF + 1)>, ... <Y(XL)> for Z = ZF

<Scaling factor for Y values> for Z = ZF+1

<Y(XF)>, <Y(XF + 1)>, ... <Y(XL)> for Z = ZF + 1

<Scaling factor for Y values> for Z = ZF + 2

<Y(XF)>, <Y(XF + 1)>, ... <Y(XL)> for Z = ZF + 2

...

<Scaling factor for Y values> for Z = ZL

<Y(XF)>, <Y(XF + 1)>, ... <Y(XL)> for Z = ZL

“OK1” or “Error Reading File”

Comment:

The header values will always be returned as ASCII text, separated by an End of
Line sequence, regardless of the selected data transfer mode. The data points
will be returned either as ASCII text, separated by an End of Line sequence, or
as floating-point numbers without any separator, depending on the selected data
transfer mode. Either ,,OK” or the error message “Error Reading File” will be
appended after the data points.

12.3.16 WRITE_HEADER

Syntax:

“WRITE_HEADER”

Description:

Writes a (new) header for a data block. After the command, the following
parameters must be send as ASCII text:

Return Value:

In case of regular spectrum blocks:
Bruker Optik GmbH OPUS-NT Programming 12–13

The C/S-Interpreter and its Commands
<Number of data points (NX = XL - XF + l) in region X>

<Frequency/number of the first data point in region X>

<Frequency/number of the last data point in region X>

In case of 3D spectrum blocks:

<Number of data points (NX = XL - XF + I) in region X>

<Frequency/number of the first data point in region X>

<Frequency/number of the last data point in region X>

<Number of spectra (NZ = ZL - ZF + 1) in region Z>

<Value (e.g. time) of the first spectrum in region Z>

<Value (e.g. time) of the last spectrum in region Z>

“OK” or error message.

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Not implemented”

Comment:

This command serves to edit existing data block headers. Especially, pay atten-
tion to the number of data points (especially in Z direction): the number of data
points specified must match the actual number of data points stored in the data
block. Otherwise, a shift of the data will result.

12.3.17 WRITE_DATA

Syntax:

“WRITE_DATA”

Description:

Writes the header and data points into a data block. After the command, the fol-
lowing parameters must be send:

In case of regular spectrum blocks:

<Number of data points (NX = XL - XF + l) in region X>
12–14 OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands
<Frequency/number of the first data point (XF) in region X>

<Frequency/number of the last data point (XL) in region X>

<Scaling factor for Y-Values> <Y(XF)>, <Y(XF + 1)>, <Y(XF + 2)>
...<Y(XL)>

In case of 3D spectrum blocks:

<Number of data points (NX = XL - XF + I) in region X>

<Frequency/number of the first data point (XF) in region X>

<Frequency/number of the last data point (XL) in region X>

<Number of spectra (NZ = ZL - ZF + 1) in region Z>

<Value (e.g. time) of the first spectrum in region Z>

<Value (e.g. time) of the last spectrum in region Z>

<Scaling factor for Y values> for Z = ZF <Y(XF)>, <Y(XF + I)>, <Y(XI,)> for
Z = ZF

<Scaling factor for Y values> for Z = ZF + 1

<Y(XF)>, <Y(XF + 1)>, ... <Y(XL)> for Z = ZF + 1

<Scaling factor for Y values> for Z = ZF + 2

<Y(XF)>, <Y(XF + 1)>, ... <Y(XL)> for Z = ZF + 2

...

<Scaling factor for Y values> for Z = ZL

<Y(XF)>, <Y(XF + I)>, ... <Y(XL)> for Z = ZL

Return Value:

“OK” or error message.

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Not implemented”

“Error Accessing Data”
Bruker Optik GmbH OPUS-NT Programming 12–15

The C/S-Interpreter and its Commands
Return Value 2:

After the header and all data points have been read by OPUS, either “OK” or an
error message will be returned.

Comment:

The header values must always be sent as ASCII text, separated by an End of
Line sequence, regardless of the selected data transfer mode. The data points
must be returned either as ASCII text, separated by an End of Line sequence, or
as floating-point numbers without any separator, depending on the selected data
transfer mode.

12.3.18 COPY_DATA

Syntax:

“COPY_DATA [<X1>[-<X2>]] [<Z1>[-<Z2>]]”

Description:

Copies data points from a data block specified by one of the commands
READ_FROM_ENTRY or READ_FROM_FILE and READ_FROM_BLOCK
to a data block specified by either the WRITE_TO_ENTRY or
WRITE_TO_FILE and WRITE_TO_BLOCK command (for parameters see
READ_HEADER).

Return Value:

After receiving the command:

 “OK” or error message.

Return Value 2:

After processing the command:

“OK” or error message.

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Not implemented”

“Error Reading File”

Comment:
12–16 OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands
The copy process take place within OPUS. Therefore, no data points are trans-
ferred via a pipe.

12.3.19 LOAD_FILE

Syntax:

“LOAD_FILE <File name>”

Description:

Loads the indicated file into OPUS.

Return Value:

 “OK” or error message.

Error:

“Syntax: LOAD_FILE <File name>”

“Error reading file”

Return Value 2:

<Path and name of the file>

<File number>

Comment:

OPUS loads the file even if it has already been loaded before. In this case
another copy (clone) is generated.

The file name returned by the command is hyphenated for further use in the
command line and is followed by the number of the copy (Clonecount).

12.3.20 UNLOAD_FILE

Syntax:

“UNLOAD_FILE <File name> or <File number>”

Description:

Unloads a file from OPUS selection line. The argument to this command is the
file name (including clonecount).

Return Value:
Bruker Optik GmbH OPUS-NT Programming 12–17

The C/S-Interpreter and its Commands
“OK” or error message.

Error:

“Syntax: UNLOAD_FILE <File name> or <File number>”

“File not loaded”

Return Value 2:

<Path and name of the file>

<File number>

Comment:

OPUS unloads the selected file. The complete path and file name, as well as the
entry number will be returned. If the path of the file is not specified, OPUS
searches the “Data Path” directory for the file.

For reasons of compatibility to OPUS-OS/2 the file can still be accessed via an
internal file number, but this number is no longer limited to the region between
1 to 699.

The file name returned by the command is hyphenated for further use in the
command line and is followed by the number of the copy (clonecount).

12.3.21 START_MACRO

Syntax:

“START_MACRO <Macro file name>[<Number of input parameters>]”

Description:

Starts an OPUS macro. Input parameters can be forwarded to the macro. If
parameters are exchanged, the total number of parameters must be defined as
the second parameter. If this number is omitted, then it will be set to 0; in this
case, no parameters are read. If the number of input parameters is larger than 0,
the input parameters <input parameter 1>, <input parameter 2>,, <input
parameter N> have to be sent by the client program. In addition, the macro can
return parameter values to the client program.

Return Value:

Immediately after the command execution (i.e. directly after the starting the
macro):

“OK” or error message.
12–18 OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands
Return Value 2:

After macro execution:

“OK” or error message.

Return Value 3:

only if the macro returned parameters:

<Number of return value parameters>

<Return value parameter 1>

< Return value parameter 2>

...

<Return value parameter N>

Return Value 4:

only if the macro returned parameters:

“OK” or error message.

Error:

“Syntax: START_MACRO <Macro File> <#Parameter>”

“Error in Opus Command Line Execution - ID: %d”

Comment regarding the command:

When executing the command the following order has to be maintained:

• Send command including the macro name and the number of input
parameters (optional).

• Read return value: “OK” or error message.

• Send input parameter.

• Read return value: “OK” or error message.

• Read return value parameter.

The individual input parameters must be separated by End of Line sequences.

Macro parameters can also directly follow a command; in this case the second
“OK” or error message will not be send.
Bruker Optik GmbH OPUS-NT Programming 12–19

The C/S-Interpreter and its Commands
Comment regarding the macros:

A structure similar to sub macro calls is used to control client programs. Input
parameters will be transferred from the client program to the macro using a dia-
log box, that must be located in the first line of the respective macro. Return
values are returned via another dialog box located in the last line of the macro.
As in the case of a sub macro call, both dialog boxes will not be displayed. If
OPUS cannot find a dialog box in the first macro line, the macro will be started
without exchanging parameters, even if they have been sent to OPUS.

In the first dialog box, the input parameters will be assigned from top to bottom;
only variables of type FILE, TEXT FOR EDIT, NUMERIC, TEXT FOR OUT-
PUT or CHECK BOX are allowed. Empty lines and variables of type BUT-
TON and COMBOBOX will be ignored. If the number of input paramteres
exchanged is not equal to the number of variables in the dialog box, OPUS ter-
minates the assignment either after all input parameters have been read or if all
macro variables have been assigned. ASCII input paramters will automatically
be converted into the format of the macro variable. Accordingly, the return val-
ues will be transformed by the last dialog box in the macro from top to bottom
into ASCII text, and, delimited by an End of Line character, returned to the cli-
ent program. Here also, empty lines and variables of type BUTTON and COM-
BOBOX will be ignored. If no dialog box can be found in the last line of the
macro (or if the dialog box is empty), OPUS returns “0” as number of return
value parameters immediately after starting the macro. Communication will be
resumed without waiting for the macro to terminate.

12.3.22 FILE_PARAMETERS

Syntax:

“FILE_PARAMETERS”

Description:

After this command, the READ_PARAMETER command reads a parameter
from the data block of a file specified by the commands
READ_FROM_ENTRY, READ_FROM_FILE or READ_FROM_BLOCK.

Return Value:

“OK”

Comment:

This is the default setting for the READ_PARAMETER command.
12–20 OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands
12.3.23 OPUS_PARAMETERS

Syntax:

“OPUS_PARAMETERS”

Description:

After this command, READ_PARAMETER reads a parameter from the OPUS
default parameter set.

Return Value:

“OK”

12.3.24 READ_PARAMETER

Syntax:

“READ_PARAMETER <Parameter name>”

Description:

Reads a parameter either from a specified data block of an OPUS file or from
the standard OPUS parameter set.

Return Value:

“OK” or error message.

Error:

“Syntax: READ_PARAMETER <parameter name>”

“No Filename or Filenumber defined”

“No Blocktype defined”

“Parameter not found”

“Invalid Parameter Name”

Return Value 2:

<Parameter value>

Comment:

The parameter name forwarded as argument to the command consists of a three-
character abbreviation (see chapter 11). After the confirmation by OPUS, the
parameter value will be transferred as ASCII text.
Bruker Optik GmbH OPUS-NT Programming 12–21

The C/S-Interpreter and its Commands
12.3.25 WRITE_PARAMETER

Syntax:

“WRITE_PARAMETER <Parameter name> <Parameter value>”

Description:

The WRITE_PARAMETER command writes a parameter or changes an exist-
ing one in the OPUS file specified by either READ_FROM_ENTRY or
READ_FROM_FILE and READ_FROM_BLOCK.

Return Value:

“OK” or error message.

Error:

“Syntax: WRITE_PARAMETER <Parameter name> <Parameter value>”

“No Filename or Filenumber defined”

“No Blocktype defined”

“Parameter not found”

“Invalid Parameter Name”

Comment:

The parameter name forwarded as argument to the command consists of a three-
character abbreviation.

The parameter value will be forwarded as ASCII text file, i.e. numerical values
have to be converted to ASCII strings.

12.3.26 RUN_MACRO

Syntax:

Equivalent to START_MACRO

Description:

The RUN_MACRO command starts a macro. Contrary to START_MACRO,
the control is returned immediately after the macro was started. The
RUN_MACRO command does not wait for the macro to terminate and also
doesn’t return any results.
12–22 OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands
Return Value:

After the command:

“OK” or error message.

Return Value 2:

After transferring the input parameter:

“OK” or error message.

Return Value 3:

<MacroID>: a macro identification number unique for each macro session.

Error:

Similar to START_MACRO

Comment:

See also START_MACRO.

To access the results of the macro started, the MACRO_RESULTS commands
is used.

The returned <MacroID> is used as parameter for the MACRO_RESULTS and
the KILL_MACRO commands.

12.3.27 MACRO_RESULTS

Syntax:

“MACRO_RESULTS <MacroID>”

Description:

The MACRO_RESULTS command retrieves the result parameters of a macro
session that was started with the ID <MacroID>, using the RUN_MACRO com-
mand.

Return Value:

“OK” or error message.

Return Value 2:

0 or 1 to indicate whether the macro has already finished or is still running.
Bruker Optik GmbH OPUS-NT Programming 12–23

The C/S-Interpreter and its Commands
Return Value 3:

Containing the results, if the macro was terminated. For a format description
see START_MACRO.

Error:

“Syntax: MACRO_RESULTS <MacroID>”

“Invalid Macro ID”

Comment:

In combination with the RUN_MACRO command, this command allows client
programs to run different tasks while the macro is still running. Use this com-
mand to frequently check, whether the macro has finished and to obtain the
return parameters.

12.3.28 KILL_MACRO

Syntax:

“KILL_MACRO <MacroID>”

Description:

KILL_MACRO terminates a macro session started by RUN_MACRO with the
specified macro ID.

Return Value:

“OK” or error message.

Error:

“Syntax: KILL_MACRO <MacroID>”

“Invalid Macro ID”

Comment:

In combination with the RUN_MACRO command this command allows client
programs to run different tasks while the macro is still running. Under certain
conditions a client program can use this command to stop a macro that is still
running. This corresponds to the Abort Task command of the OPUS task bar.
12–24 OPUS-NT Programming Bruker Optik GmbH

Obsolete Commands
12.4 Obsolete Commands

The following commands are only supported out of compatibility reasons to
OPUS-OS/2. Due to the different concept of OPUS-NT, they are no longer of
any practical importance.

12.4.1 OVERWRITE

Syntax:

“OVERWRITE”

Description:

Allows the subsequent commands to overwrite files and data blocks.

Return Value:

“OK”

Comment:

Subsequent to this command, the following commands are allowed to overwrite
files and data blocks:

WRITE_TO_ENTRY

WRITE_TO_FILE

WRITE_TO_BLOCK

12.4.2 PRESERVE

Syntax:

“PRESERVE”

Description:

Prevents files and data blocks from being replaced.

Return Value:

“OK” or error message.

Error:

“Set OVERWRITE mode to replace blocks”
Bruker Optik GmbH OPUS-NT Programming 12–25

The C/S-Interpreter and its Commands
Comment:

Subsequent to this command, the following commands cannot replace existing
files and data blocks:

WRITE_TO_ENTRY

WRITE_TO_FILE

WRITE_TO BLOCK

If an existing data block was specified in a WRITE_TO_BLOCK command,
OPUS returned the message “Set OVERWRITE mode to replace blocks”.

In case of a WRITE_TO_ENTRY or WRITE_TO_FILE command, the file
name extension was incremented until the first non-existing file was obtained.

Example:

Assume the files TEST.2 and TEST.3 already exist in the current OPUS\DATA
directory. The “WRITE_TO_FILE TEST.1” command is sent twice. The first
time the command is executed and generates the file TEST.1. The second time,
the file name extension is incremented until the first non-existing file name is
obtained (TEST.1), because it is not allowed to replace the now existing file
TEST.1.

12.4.3 TIMEOUT

Syntax:

“TIMEOUT <Delay>”

Description:

Sets a delay time (in seconds) for the pipe, which may not be replaced during
read and write processes.

Return Value:

“OK” or error message.

Error:

“Invalid time limit”

“Syntax: TIMEOUT<Seconds>”

Comment:

The delay is an integer between l and 1000. Without this command the default
12–26 OPUS-NT Programming Bruker Optik GmbH

New Commands
value of 10 seconds will be used.

12.5 New Commands

The first view commands of this section serve to further specify the binary
transfer mode. They mainly concern the data exchange with scripts. Because
scripts allow no direct memory access, the data must be enclosed in a variable
field to allow binary data exchange. Hence, the single elements are assigned a
certain type: BYTE_MODE, INT_MODE, FLOAT_MODE, and
DOUBLE_MODE allow to define, whether the binary OPUS data will be con-
tained in a BYTE, INTEGER, FLOAT, or DOUBLE field in a script.

In case of a pipe, the respective memory region can be transferred directly,
which then will be interpreted on the receiving side.

No binary return values are allowed when using DDE connections; these are
available in the HEXSTRING_MODE.

12.5.1 BYTE_MODE

Syntax:

“BYTE_MODE”

Description:

Sets the binary transfer mode to single bytes.

Return Value:

“OK”

12.5.2 INT_MODE

Syntax:

“INT_MODE”

Description:

Sets the binary transfer mode to integer.

Return Value:

“OK”
Bruker Optik GmbH OPUS-NT Programming 12–27

The C/S-Interpreter and its Commands
12.5.3 FLOAT_MODE

Syntax:

“FLOAT_MODE”

Description:

Sets the binary transfer mode to floating-point numbers.

Return Value:

“OK”

12.5.4 DOUBLE_MODE

Syntax:

“DOUBLE_MODE”

Description:

Sets the binary transfer mode to double-precision.

Return Value:

“OK”

12.5.5 HEXSTRING_MODE

Syntax:

“HEXSTRING_MODE”

Description:

Sets the binary transfer mode to text.

Return Value:

“OK” or error message.

Comment:

DDE connection default settings for binary mode.

The data is converted to individual strings of numbers, depending on the mode
chosen (BYTE_MODE, INT_MODE, FLOAT_MODE and DOUBLE_MODE)
and will be transmitted as text.
12–28 OPUS-NT Programming Bruker Optik GmbH

New Commands
12.5.6 FLOATCONV_MODE

Syntax:

“FLOATCONV_MODE ON|OFF”

Description:

Switches the conversion of floating-point numbers on and off, when using
binary transfer mode.

Return Value:

“OK” or “ON|OFF”

Comment:

When using a pipe for binary data transfer under OS/2, a scaling factor was
transferred prior to the actual data. This factor was also transferred binary, but
compared to the data transfer at double-precision (8 instead of 4 bytes). In
OPUS-NT, this factor is found in the first element of the returned field.

If FLOATCONV_MODE is not selected for the binary data transfer to a script,
the first 8 bytes of data (the double-precision scaling factor) will be misinter-
preted as two single-precision floating-point numbers.

If neither „ON“ nor „OFF“ is forwarded as parameter the return value text pro-
vides the current settings.

12.5.7 GET_DISPLAY

Syntax:

“GET_DISPLAY”

Description:

Provides an identification number of the currently active display window.

Return Value:

“OK”

Return Value 2:

<WindowID>

Comment:

The number returned can be used as parameter for the SET_WINDOW,
Bruker Optik GmbH OPUS-NT Programming 12–29

The C/S-Interpreter and its Commands
CLOSE_WINDOW, and POSITION_WINDOW commands.

12.5.8 SET_WINDOW

Syntax:

“SET_WINDOW <WindowID>”

Description:

The window specified by the identification number will be promoted to be the
active display window for the current C/S session.

Return Value:

“OK” or error message.

Error:

“Syntax: SET_WINDOW <Window>”

Comment:

If new files are loaded or generated by another OPUS function, they will be dis-
played in the currently active window. The function is used to define this win-
dow.

12.5.9 NEW_WINDOW

Syntax:

“NEW_WINDOW <Window type>”

Description:

Creates a new window of the type specified.

Return Value:

“OK” or error message.

Error:

“Syntax: NEW_WINDOW <Window type>”

“Error creating View”

Comment:

The window type defines, that for example a new report window will be gener-
12–30 OPUS-NT Programming Bruker Optik GmbH

New Commands
ated.

12.5.10 CLOSE_WINDOW

Syntax:

“CLOSE_WINDOW <WindowID>”

Description:

Closes the window specified by the <WindowID>.

Return Value:

“OK” or error message.

Error:

“Syntax: CLOSE_WINDOW <Window>”

Comment:

The parameter <WindowID> necessary to address the display window can
result from either NEW_WINDOW or from GET_DISPLAY.

12.5.11 POSITION_WINDOW

Syntax:

“POSITION_WINDOW <WindowID> <x> <y> <cx> <cy>”

Description:

Positions the display window specified by <WindowID> at the coordinates
<x>, <y> and re-sizes it to <cx>, <cy>.

Return Value:

“OK” or error message.

Error:

“Syntax: POSITION_WINDOW <Window> <x> <y> <cx> <cy>\n”

Comment:

The parameter <WindowID>, necessary to address the display window, can
result from either NEW_WINDOW or from GET_DISPLAY.
Bruker Optik GmbH OPUS-NT Programming 12–31

The C/S-Interpreter and its Commands
12.5.12 GET_LANGUAGE

Syntax:

“GET_LANGUAGE”

Description:

Retrieves the current language settings of OPUS-NT. The language is set using
the command line argument /LANGUAGE when starting OPUS.

Return Value:

“OK”

Return Value 2:

<Language>

Comment:

The name of the language will be returned as text.

12.5.13 GET_OPUSPATH

Syntax:

“GET_OPUSPATH”

Description:

Retrieves the path of the currently running OPUS program.

Return Value:

“OK”

Return Value 2:

<Path>

Comment:

The path can be checked in the User Settings dialog box of the Setup OPUS
pull-down menu.
12–32 OPUS-NT Programming Bruker Optik GmbH

New Commands
12.5.14 GET_BASEPATH

Syntax:

“GET_BASEPATH”

Description:

Retrieves the default path of the currently logged in user.

Return Value:

“OK”

Return Value 2:

<Path>

Comment:

The path is set in the User Settings dialog box of the Setup OPUS pull-down
menu.

12.5.15 GET_DATAPATH

Syntax:

“GET_DATAPATH”

Description:

Retrieves the data path of the currently logged in user.

Return Value:

“OK”

Return Value 2:

<Path>

Comment:

The path is set in the User Settings dialog box of the Setup OPUS pull-down
menu.

12.5.16 GET_WORKPATH

Syntax:

“GET_WORKPATH”
Bruker Optik GmbH OPUS-NT Programming 12–33

The C/S-Interpreter and its Commands
Description:

Retrieves the path for work files of the currently logged in user.

Return Value:

“OK”

Return Value 2:

<Path>

Comment:

The path is set in the User Settings dialog box of the Setup OPUS pull-down
menu.

12.5.17 GET_USERNAME

Syntax:

“GET_USERNAME”

Description:

Retrieves the name of the currently logged in user.

Return Value:

“OK”

Return Value 2:

<Name>

Comment:

The user account is set in the User Settings dialog box of the Setup OPUS pull-
down menu.

12.5.18 GET_BENCH

Syntax:

“GET_BENCH”

Description:

Retrieves the configuration file of the currently selected spectrometer.
12–34 OPUS-NT Programming Bruker Optik GmbH

New Commands
Return Value:

“OK”

Return Value 2:

<OpticsFile>

12.5.19 UPDATE_BENCH

Syntax:

“UPDATE_BENCH <OpticsFile>”

Description:

Triggers OPUS to initialize the optics configuration using the settings stored in
the <OpticsFile>.

Return Value:

“OK” or error message.

Error:

“Syntax: UPDATE_BENCH <inifile>”

“RebuildParmText error”

12.5.20 COMMAND_SAY

Syntax:

“COMMAND_SAY <Text>”

Description:

Returns the transferred commands in text format.

Return Value:

<Text>

Comment:

This command serves to test the communication between OPUS and the client
program. It can also be used to forward parameters to scripts. To do this, call
the OpusCommand function of a form created with the OpenForm command (or
selected with FormByName), and forward parameters using COMMAND_SAY
<Parameter>. The form receives the parameter with OnOpusResult <Parame-
ter>.
Bruker Optik GmbH OPUS-NT Programming 12–35

The C/S-Interpreter and its Commands
12.5.21 REPORT_INFO

Syntax:

“REPORT_INFO”

Description:

Retrieves information about the number of main and sub reports of an OPUS
report block.

Return Value:

“OK” or error message.

Return Value 2:

<#Main reports>

<#Sub reports 1>

...

<#Sub reports N>

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Error Reading Report”

Comment:

First, the total number of main reports is returned, followed by the number of
sub reports contained in each main report. Each line holds only one number.

The information is obtained from the OPUS report block selected by the
READ_FROM_FILE, READ_FROM_ENTRY and READ_FROM_BLOCK
commands.

12.5.22 HEADER_INFO

Syntax:

“HEADER_INFO <Main report> <Sub report>”

Description:

Returns the number of lines in an OPUS report block header.
12–36 OPUS-NT Programming Bruker Optik GmbH

New Commands
Return Value:

“OK” or error message.

Return Value 2:

<Lines>

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Error Reading Report”

Comment:

If no sub report is specified, the number of lines in the header of the main report
block is returned instead. If also no main report is specified, the first main
report will be taken.

The information is obtained form the OPUS report block selected by the
READ_FROM_FILE, READ_FROM_ENTRY and READ_FROM_BLOCK
commands.

12.5.23 MATRIX_INFO

Syntax:

“MATRIX_INFO <Main report> <Sub report>”

Description:

Returns the dimension (number of rows and columns) of a matrix stored in an
OPUS report block.

Return Value:

“OK” or error message.

Return Value 2:

<Rows>

<Columns>

Error:

“No Filename or Filenumber defined”
Bruker Optik GmbH OPUS-NT Programming 12–37

The C/S-Interpreter and its Commands
“No Blocktype defined”

“Error Reading Report”

Comment:

If no sub report is specified, the number of rows in the main reports’ header will
be returned. If also no main report is specified, the first main report will be
taken.

The information is obtained form the OPUS report block selected by the
READ_FROM_FILE, READ_FROM_ENTRY, and READ_FROM_BLOCK
commands.

12.5.24 MATRIX_ELEMENT

Syntax:

“MATRIX_ELEMENT <Main report> <Sub report> <Row> <Column>”

Description:

Reads an element from a data matrix of an OPUS report block. The index of the
main/sub report as well as the index of the row and column has to be indicated.

Return Value:

“OK” or error message.

Return Value 2:

<MatrixElement>

Error:

“Syntax: MATRIX_ELEMENT <MainReport> <SubReport> <Row> <Col-
umn>”

“No Filename or Filenumber defined”

“No Blocktype defined”

“Error Reading Report”

Comment:

If the main report should be accessed, the sub report number must be set to “0”.

Determine the total number of rows and columns, using the MATRIX_INFO
command.
12–38 OPUS-NT Programming Bruker Optik GmbH

New Commands
All values are converted to text format prior to the transfer, regardless of the
data format of the element.

The information is obtained form the OPUS report block selected by the
READ_FROM_FILE/READ_FROM_ENTRY, and READ_FROM_BLOCK
commands.

12.5.25 HEADER_ELEMENT

Syntax:

“HEADER_ELEMENT <Main report> <Sub report> <Row>”

Description:

Reads an element from the OPUS report block header. The index of the main/
sub report as well as the number of the row has to be indicated.

Return Value:

“OK” or error message.

Return Value 2:

<ElementName>

<ElementContent>

Error:

“Syntax: HEADER_ELEMENT <MainReport> <SubReport> <Row>”

“No Filename or Filenumber defined”

“No Blocktype defined”

“Error Reading Report”

Comment:

The name of the feature in the selected header row and its value will be
returned. If the main report should be accessed, the sub report number must be
set to “0”.

Determine the total number of rows and columns using the HEADER_INFO
command.

All values are converted to text format prior to the transfer, regardless of the
data format of the element.
Bruker Optik GmbH OPUS-NT Programming 12–39

The C/S-Interpreter and its Commands
The information is obtained form the OPUS report block selected by the
READ_FROM_FILE/READ_FROM_ENTRY and READ_FROM_BLOCK
commands.

12.5.26 COMMAND_MODE

Syntax:

“COMMAND_MODE”

Description:

Sets the mode for processing a command line to COMMAND_MODE. This
mode runs commands and programs in the background and returns a message
after termination of the program.

Return Value:

“OK”

Comment:

Usually, this mode doesn’t need to be explicitly set, since these modi are pre-
defined for the different transfer types and interfaces or alternatively are set by
different calls (like OpusExecute).

12.5.27 EXECUTE_MODE

Syntax:

“EXECUTE_MODE”

Description:

Sets the mode for processing a command line to EXECUTE_MODE. This
mode runs commands and programs in the background, but does not wait for the
programs to terminate. No message will be returned when a program has fin-
ished.

Return Value:

“OK”

Comment:

Usually, this mode doesn’t need to be explicitly set, since these modi are pre-
defined for the different transfer types and interfaces or alternatively are set by
different calls (like OpusExecute).
12–40 OPUS-NT Programming Bruker Optik GmbH

New Commands
12.5.28 REQUEST_MODE

Syntax:

“REQUEST_MODE”

Description:

Sets the mode for processing a command line to REQUEST_MODE. This
mode does not run commands and programs in the background, but waits for the
programs to terminate. The result will be returned as soon as the program ter-
minates.

Return Value:

“OK”

Comment:

Usually, this mode doesn’t need to be explicitly set, since these modi are pre-
defined for the different transfer types and interfaces or alternatively are set by
different calls (like OpusExecute).

12.5.29 CLOSE_OPUS

Syntax:

“CLOSE_OPUS”

Description:

Terminates OPUS.

Return Value:

No return values.

Comment:

This operation is similar to closing the OPUS user interface window.

12.5.30 TAKE_REFERENCE

Syntax:

“TAKE_REFERENCE <Experiment file>”

Description:

Performs a reference measurement using the specified <Experiment file>.
Bruker Optik GmbH OPUS-NT Programming 12–41

The C/S-Interpreter and its Commands
Return Value:

“OK” or error message.

Error:

“Error in Opus Command Line Execution - ID: %d”

12.5.31 MEASURE_SAMPLE

Syntax:

“MEASURE_SAMPLE <Experiment file>”

Description:

Performs a sample measurement using the specified <Experiment file> and
returns the acquired spectral data as text.

Return Value:

“OK” or error message.

Return Value 2:

Result File:<File number>

<File name>

Block: <Block type>

<UnitsX>

<UnitsY>

Points: <Number of points>

<x1> <y1>

...

<xn> <yn>

Error:

“Error in Opus Command Line Execution - ID: %d”

Comment:

All blocks of the new file (specified by the experiment file) are transmitted in
succession as data point tables.
12–42 OPUS-NT Programming Bruker Optik GmbH

New Commands
12.5.32 COMMAND_LINE

Syntax:

“COMMAND_LINE <Command line>”

Description:

Calls an OPUS function as command lines.

Return Value:

“OK” or error message.

Return Value 2:

Only in combination with COMMAND_MODE

<ThreadID>

Error:

“Error in Opus Command Line Execution - ID: %d”

Comment:

In this exception, the keyword COMMAND_LINE can be omitted, because
OPUS tries to interpret all unknown C/S commands in command line notation.

The actual type of command processing depends on the call of the command (in
case of scripts for example OpusExecute), or the settings made by
COMMAND_MODE, EXECUTE_MODE, and REQUEST_MODE.

If COMMAND_MODE was selected, an identification number is supplied for
the background calculation, which can be used to abort the function in case of
STOP_THREAD.

12.5.33 STOP_THREAD

Syntax:

“STOP_THREAD <ThreadID>”

Description:

Terminates a OPUS processing function which was started by the
COMMAND_LINE function while COMMAND_MODE was selected.
Bruker Optik GmbH OPUS-NT Programming 12–43

The C/S-Interpreter and its Commands
Return Value:

“OK” or error message.

Error:

“Syntax: STOP_THREAD <ThreadID>”

Comment:

In COMMAND_MODE, COMMAND_LINE starts the function in the back-
ground and returns an identification number. This number can be used to abort
the function. This is similar to the Abort Task command of the task manager.

Note: Aborting a program may result in data loss and produce corrupt OPUS
files. Therefore, it should only be used in emergencies.

12.5.34 ACTIVATE_DIALOG

Syntax:

“ACTIVATE_DIALOG <Command line>”

Description:

Starts the dialog box of an OPUS function.

Return Value:

“OK” or error message.

Error:

“Syntax: ACTIVATE_DIALOG CommandLine()”

Comment:

Opening an OPUS function dialog box within another program usually is not
very practical, since the program cannot control the dialog box once it has been
opened. A command line is required as a parameter similar to direct command
processing.

12.5.35 LOAD_EXPERIMENT

Syntax:

“LOAD_EXPERIMENT <Experiment file>”
12–44 OPUS-NT Programming Bruker Optik GmbH

New Commands
Description:

Loads an experiment file in OPUS and sets the parameters for subsequent data
acquisitions.

Return Value:

“OK” or error message.

Error:

“Syntax: LOAD_EXPERIMENT <parameter file>”

“Unable to load Experiment file”

Comment:

This command is similar to the respective function of the OPUS Measurement
dialog box.

12.5.36 GET_USERRIGHTS

Syntax:

“GET_USERRIGHTS”

Description:

Retrieves the rights of the current user.

Return Value:

“OK”

Return Value2:

A list of user rights separated by semicolons or “No Rights”

Comment:

Allows to adjust programs/scripts to perform different actions, depending on the
user rights.

12.5.37 PACKET_AVAILABLE

Syntax:

“PACKET_AVAILABLE <Packet name>”
Bruker Optik GmbH OPUS-NT Programming 12–45

The C/S-Interpreter and its Commands
Description:

Tests if certain OPUS software packages are installed on a computer.

Return Value:

“Yes”, “No” or error message.

Error:

“Syntax: PACKET_AVAILABLE <Packet name>”

Comment:

Allows a script or program to determine, whether a software package or an
OPUS function is available at all. This applies to QUANT, SEARCH, 3D etc..

12.5.38 GET_CLIENTAREA

Syntax:

“GET_CLIENTAREA”

Description:

Retrieves the available window size of the OPUS main window. This is depen-
dent on the chosen screen resolution. The result can be used for the positioning
of script forms and spectrum windows etc.

Return Value:

“OK”

Return Value2:

<width> <height>

Comment:

The returned values can be used as parameters for POSITION_WINDOW.

12.5.39 ACTIVATE_DISPLAY

Syntax:

“ACTIVATE_DISPLAY” <WindowID>

Description:

A spectrum window can be activated using this command. It will then be dis-
12–46 OPUS-NT Programming Bruker Optik GmbH

New Commands
played in the front. The window specified by the ID number will then be the
active window for displaying the spectra.

Return Value:

“OK” or error message

Error:

“Syntax: ACTIVATE_DISPLAY <window>

Comment:

If new files are loaded or created by other OPUS functions, they will then be
displayed in the currently active window. The active window can be determined
with this function. Whereas SET_WINDOW is only valid for files used in
script, here the active window e.g. for manual loading can be set.

12.5.40 GET_LIMITS

Syntax:

“GET_LIMITS <WindowID>”

Description:

Lists the actual display limits of the window.

Return Value:

“OK” or error message

Return Value 2:

<X1> <Y1> <X2> <Y2>

Error:

“Syntax: GET_LIMITS <window>”

Comment:

The <WindowID> can either be a result of NEW_WINDOW or
GET_DISPLAY

12.5.41 SET_LIMITS

Syntax:

“SET_LIMITS <WindowID> <X-start> <X-end> <Y-start> <Y-end>”
Bruker Optik GmbH OPUS-NT Programming 12–47

The C/S-Interpreter and its Commands
Description:

Sets the display limits of the window to the given values. this is useful to e.g.
enlarge certain areas of the spectrum automatically. The four values determine
the coordinates for the new display limits.

Return Value:

“OK” or error message

Error:

“Syntax: SET_LIMITS <window> <xsp> <xep> <ymn> <ymx>”

Comment:

The <WindowID> can either be a result of NEW_WINDOW or
GET_DISPLAY

12.5.42 DISPLAY_BLOCK

Syntax:

“DISPLAY_BLOCK <WindowID> <color>”

Description:

Displays a datablock of an OPUS file selected by the commands
READ_FROM_ENTRY, READ_FROM_FILE or READ_FROM_BLOCK in
a display window determined by <windowID>. <color> determines the color of
the curve as RGB value.

Return Value:

“OK” or error message

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Syntax: DISPLAY_BLOCK <window> <color>”

Comment:

The <WindowID> can either be a result of NEW_WINDOW or
GET_DISPLAY
12–48 OPUS-NT Programming Bruker Optik GmbH

New Commands
12.5.43 UNDISPLAY_BLOCK

Syntax:

“UNDISPLAY_BLOCK <WindowID>”

Description:

Removes a datablock of an OPUS file specified by READ_FROM_ENTRY,
READ_FROM_FILE or READ_FROM_BLOCK from the window identified
by <WindowID>.

Return Value:

“OK” or error message

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Syntax: UNDISPLAY_BLOCK <window>”

Comment:

The <WindowID> can either be a result of NEW_WINDOW or
GET_DISPLAY

12.5.44 ENUM_STRINGS

Syntax:

“ENUM_STRINGS <parametername>

Description:

Possible values for a parameter of type ENUM can be requested at the given
conditions, e.g. depending on the spectrometer.

Return Value:

“OK” or error message

Return Value 2:

<number of the following valid strings>

<first parameterstring>

...
Bruker Optik GmbH OPUS-NT Programming 12–49

The C/S-Interpreter and its Commands
<last parameterstring>

Error:

“Syntax: ENUM_STRINGS <parameter name>”

“Invalid Parameter Name”

“No Enum Strings”

Comment:

The parameter name transferred as an argumentis a three letter abbrevation of a
parameter.

12.5.45 GET_VERSION

Syntax:

“GET_VERSION>”

Description:

Returns the version of the currently running OPUS NT program.

Return Value:

“OK”

Return Value 2:

<Version>

Error:

Comment:

Enables the reaction on and the controlling of, different current OPUS versions
from one program.

12.5.46 ASK_THREAD

Syntax:

“ASK_THREAD <ProcessID> <special command>

Description:

Enables the interprocess communication of an external program with a running
Opus function.
12–50 OPUS-NT Programming Bruker Optik GmbH

New Commands
Return Value:

“OK” or error message

Return Value 2:

depending on the transferred command

Error:

“ASK_THREAD failed”

“Invalid Thread ID”

Comment:

This direct communication with currently running OPUS functions is intended
only for very special applications. It is mentioned here only for the sake of com-
pleteness. However it is actually reserved to internal programming and is used
for the coupling with other instruments. One receives the ProcessID either when
starting the function in the COMMAND_MODE or through
FIND_FUNCTION

12.5.47 FIND_FUNCTION

Syntax:

“FIND_FUNCTION <function name>”

Description:

Determines whether a certain OPUS function is executed in the background.
The returned ID can be used to stop the function or to communicate with it (if
supported).

Return Value:

“OK” or error message

Return Value 2:

<ProcessID> for identification

Error:

“Syntax: FIND_FUNCTION <FunctionName> or <ThreadID>

“Function not found”

Comment:
Bruker Optik GmbH OPUS-NT Programming 12–51

The C/S-Interpreter and its Commands
This direct communication with currently running OPUS functions is intended
only for very special applications. It is mentioned here only for the sake of com-
pleteness. However it is actually reserved to internal programming and is used
for the coupling with other instruments.

12.5.48 WORKBOOK_MODE

Syntax:

“WORKBOOK_MODE ON|OFF”

Description:

Turns the tabs for switching between different windows at the bottom of the
OPUS window on or off.

Return Value:

“OK” or ON|OFF”

Error:

Comment:

When the buttons are deactivated, switching between different windows is no
longer possible. In the case that a simple user interface is required, one prevents
thereby deviations from the operational sequence intended.

12.5.49 GET_SELECTED

Syntax:

“GET_SELECTED”

Description:

Supplies the names of the selected (red bordered) files.

Return Value:

“OK” or error message

Return Value 2:

<name of selected files>

Error:

“Error while getting file info”
12–52 OPUS-NT Programming Bruker Optik GmbH

New Commands
Comment:

The normal behavior of OPUS, to automatically select marked files for the pro-
cessing functions, is extended to self-written extension functions.

12.5.50 LIST_BLOCKS

Syntax:

“LIST_BLOCKS”

Description:

Lists all available spectral data blocks of the OPUS file delivered by the com-
mand READ_FROM_ENTRY or READ_FROM_FILE.

Return Value:

“OK” or error message

Return Value 2:

<number of block names>

<first block name>

...

<last block name>

Error:

“No Filename or Filenumber defined”

“Error getting blocks”

Comment:

Enables to determine which blocks are containing an unknown file and then
work with the correct ones accordingly.

12.5.51 SHOW_TOOLBAR

Syntax:

“SHOW_TOOLBAR <toolbar>”

Description:

Shows a toolbar. Valid parameters are:
Bruker Optik GmbH OPUS-NT Programming 12–53

The C/S-Interpreter and its Commands
MENU, STANDARD, COMMANDLINE, PLE, DISPLAY, MEASURE,
MANIPULATE, EVALUATE, MDISPLAY, PLOT_PRINT, MACRO, INFO,
USER, SETUP, FILE, BROWSER, STATUSBAR

Return Value:

“OK” or “Already visible”

Error:

“Syntax: SHOW_TOOLBAR <toolbarID>”

“Unknown Toolbar”

Comment:

Warning: The adjustments on the desktop made with this function are stored
when leaving OPUS. In order to avoid unwanted effects, all modifications of the
original configuration should be cancelled again before the final termination of
the self-written program!

12.5.52 HIDE_TOOLBAR

Syntax:

“HIDE_TOOLBAR <toolbar>”

Description:

Hides a toolbar. Valid parameters are:

MENU, STANDARD, COMMANDLINE, PLE, DISPLAY, MEASURE,
MANIPULATE, EVALUATE, MDISPLAY, PLOT_PRINT, MACRO, INFO,
USER, SETUP, FILE, BROWSER, STATUSBAR

Return Value:

“OK” or “Already visible”

Error:

“Syntax: HIDE_TOOLBAR <toolbarID>”

“Unknown Toolbar”

Comment:

Warning: The adjustments on the desktop made with this function are stored
when leaving OPUS. In order to avoid unwanted effects, all modifications of the
original configuration should be cancelled again before the final termination of
12–54 OPUS-NT Programming Bruker Optik GmbH

New Commands
the self-written program!

12.5.53 QUICK_PRINT

Syntax:

“QUICK_PRINT”

Description:

Activates the function “Quickprint”. The currently active window will be
printed.

Return Value:

“OK”

Error:

Comment:

To print a certain window with this function, it has to be activated with
ACTIVATE_DISPLAY first.
Bruker Optik GmbH OPUS-NT Programming 12–55

The C/S-Interpreter and its Commands
12–56 OPUS-NT Programming Bruker Optik GmbH

The C/S Interpreter
13 Script Commands

In this chapter you find a list of all commands that are available for scripts in
OPUS. They are sorted according to the following categories: commands inter-
preted by OPUS, native VBScript commands and the functions of the objects
involved.

13.1 The C/S Interpreter

From within a script all commands of the Client/Server interpreter described in
chapter 12 are available. This includes all command line calls and also all com-
mands that can be transferred via a DDE connection or a pipe, as well as
VBScript functionalities.

13.2 VBScript Language

In the following you will find a simple tutorial that should make you familiar
with the general element of the VBScript language and their use.

13.2.1 VBScript Data Types

In VBScript only one data type exists: variant. Hence, all VBScript functions
return this data type. Variant is able to hold different kinds of information,
depending on how it is used.

In the simplest case, a variant stores numerical values or strings. A variant
behaves like a number if it is used in a numerical context, and like a string if
addressed as text. If you work with data that “looks” like numbers, variant will
interpret them as such. Of course you can always force numbers to be inter-
preted as text by enclosing them in hyphens. This is not required if the data is
obviously text.

Variant Subtypes

Besides the simple classification of numerical values and strings, the category
numerical of a variant can be subdivided. For instance, a date value or a time
value can be of the class numerical. In combination with other date and time
values, the result will always be expressed in the respective format. Of course
there exists a large number of other types of numerical information e.g. boolean
values or large floating-point numbers. These classes of information are called
subtypes of variant.
Bruker Optik GmbH OPUS-NT Programming 13–1

Script Commands
Usually it is sufficient to simply assign variant data of a certain type. Variant
will automatically behave according to the data type. The next table lists the
different sub-types of variant.

Several conversion functions exist to convert one subtype into another. In addi-
tion, the function VarType returns information about how this data ist stored
within variant.

13.2.2 VBScript Variables

A variable is a placeholder that refers to a location in the computers memory
where programs can store their data. The data may change during run time of
the script. For exmple, a variable named “click” can be used to store how many
times the user clicks on a certain form. The location of the variable in the com-
puters’ memory is irrelevant. The name of the variable is sufficient to read its
value. In VBScript variables always are of the data type variant.

Variable Declaration

Variables are explicitely declared in a script using the Dim, Public and Private
statement. For example:

Sub-Type Description

Empty
variant is not initialized. Numerical variables are set to 0, string variables are a
zero-length string ("").

Null variant intentionally contains no valid data .

Boolean is either TRUE or FALSE.

Byte contains an integer ranging from 0 to 255.

Integer contains an integer ranging from -32,768 bis 32,767.

Currency
contains a number ranging from -922,337,203,685,477.5808 to
922,337,203,685,477.5807.

Long contains an integer ranging from -2.147.483.648 to 2.147.483.647.

Single
contains a single-precision floating-point number ranging from -3,402823E38
to -1,401298E-45 for negative values and from 1,401298E-45 to 3,402823E38 for
positive values.

Double
contains a double-precision floating-point number ranging from
-1,79769313486232E308 to -4,94065645841247E-324 for negative values and
from 4,94065645841247E-324 to 1.79769313486232E308 for positive values.

Date
(Time)

contains a number representing a date between 1. January 100 and 31. December
9999.

String contains a string of variable length, up to 2 billion characters

Object contains an object.

Error contains an error number.
13–2 OPUS-NT Programming Bruker Optik GmbH

VBScript Language
 Dim DegreesFahrenheit

Multiple variables are declared at once by separating them with commas:

 Dim Top, Bottom, Left, Right

A variable can also be declared implicitely by using its name at any position in a
script. However, this is looked upon as bad style; you could mistype a variable
name at one or more places which in turn leads to unpredictable results when
executing the script. Hence, the Option Explicit statement was introduced to
force an explicit variable declaration. Therefore, the Option Explicit statement
should always be the first statement in a script.

Naming Restrictions

The standard rules for naming language elements in VBScript also apply to
variable names:

• they have to start with an alphabet character

• no embedded periods are allowed.

• the maxmum lenght is 255 characters.

• they must be unique within the scope for which they have been
declared.

Validity and Life Time of Variables

If a variable was declared within a procedure, only code from within this proce-
dure can access or change the value of that variable. The variable is valid only
locally and is therefore called procedure-level variable. In case the variable
declaration is not part of a procedure, the variable is recognized by all proce-
dures of the script. The validity scope of this script-level variable is the script
level.

The life time of a variable is the time during which a variable exists. The life
time extends from the time of the variable declaration until the script is termi-
nated. The life time of a procedure-level variable starts with the variable decla-
ration at the beginning of a procedure and ends with the end of the procedure.
Procedure-level variables are ideal as temporary storage while the procedure is
running. You can use procedure-level variables of the same name in several
procedures, because each variable is only recognized by the procedure in which
it was defined.

Assigning Values to Variables

Values are assigned using an expression that contains the variable name on the
left side of the equal sign and the value on the right side. For example:

 B = 200
Bruker Optik GmbH OPUS-NT Programming 13–3

Script Commands
Scalar Data and Arrays

Usually, only a single value is assigned to a variable. These variables are called
scalar variables. In some cases it is useful to assign several related values to the
same variable. You can create a variable which can contain a series of values,
called array variables. They are declared similar to scalar variables, the only
difference are patentheses that follow the variable name. A single-dimensional
array with 11 elements can be declared as:

 Dim A(10)

Although the number enclosed in patentheses is 10 this array consists of 11
elelment, because the index in VBScripts starts at 0. This type of array is called
a fixed size array.

You assign values to the different elements using the index number. Indices
running from 0 to 10 are used in the following example to assign values to the
array:

 A(0) = 256
 A(1) = 324
 A(2) = 100
 . . .
 A(10) = 55

In the same way (using the index of the array) values can be read from the array
elements:

 . . .
 AVariable = A(8)
 . . .

Arrays are not limited to a single dimension. Up to 60 dimensions are allowed,
although most people find it difficult to think of more than 3 dimensions. The
dimension is declared by introducing more array parameters in the parentheses
and separated by a comma. The declaration of a two dimensional array variable
Table1 with 6 rows and 11 columns would look like this:

 Dim Table1(5, 10)

The first number in a two-dimensional array always specifies the number of
rows and the second the number of columns.

The size of arrays may also vary during run time of a script. This type of array
is called a dynamic array. Initially, the array is declared in a procedure using a
Dim or a ReDim statement, like any ordinary array. But in this case the number
of dimensions is not stated, the brackets are empty:

 Dim ADataField()
 ReDim AndotherDataField()

In order to use such an array, the number of dimensions and their size must be
defined later using the ReDim command. In the following, ReDim is used to set
13–4 OPUS-NT Programming Bruker Optik GmbH

VBScript Language
the initial size of the the dynamic array to 25. The subsequent ReDim statement
changes the size to 30, but uses Preserve as keyword, which leaves the content
of the array intact during the change of the size:

 ReDim ADataField(25)
 . . .
 ReDim Preserve ADataField(30)

There is no restriction to how often the size of a dynamic array may be changed.
However, decreasing the size of a array will result in loss of data contained in
the removed elements.

13.2.3 VBScript Constants

A constant is an expressive name that takes the place of a number or a string and
does not change. VBScript defines a number of intrinsic constants.

Creating Constants

User-defined constants are created in VBScripts with the Const statement. It
allows to create numerical and string constants and assign them a literal name:

Const String1 = "This is my string."
Const Age = 49

Note that the string literal is hyphenated (" "). Quotation marks are the most
obvious way to distinguish between string values and numeric values. Date/time
literals are enclosed in number signs (#):

Const Deadline = #6-1-97#

There is no difference between constants created in this way and regular vari-
ables. Therefore, you may want to adopt a naming scheme to differentiate con-
stants from variables. This will prevent you from accidentially trying to assign a
value to a constant while your script is running. For example, you might want to
use a “vb” or “con” prefix on your constant names, or you might name your
constants in capitals. In any case, you should be able to differentiate between
constants and variables to eliminate confusion as you develop more complex
scripts.

13.2.4 VBScript Operators

VBScript has a full range of operators, including arithmetic operators, compari-
son operators, concatenation operators, and logical operators.

Operator Precedence

When several operations occur in an expression, each part is evaluated and
resolved in a predetermined order called operator precedence. You can override
Bruker Optik GmbH OPUS-NT Programming 13–5

Script Commands
the order of precedence and force some parts of an expression to be evaluated
before others by using parentheses. Operations within parentheses are always
performed before those outside. However, within parentheses standard operator
precedence is maintained.

If an expression contains operators from different categories, arithmetic opera-
tors are evaluated first, comparison operators are evaluated next, and logical
operators are evaluated last. Comparison operators all have equal precedence;
that is, they are evaluated in the left-to-right order in which they appear. Arith-
metic and logical operators are evaluated in the following order of precedence:

When multiplication and division occur in an expression, each operation is eval-
uated as it occurs from left to right. Addition and subtraction are handled in the
same way, should they occur together in an expression.

The string concatenation (&) operator is not an arithmetic operator, but in pre-
cedence it ranks after all arithmetic operators and before all comparison opera-
tors. The Is operator is used for object reference comparison. It does neither
compare objects nor their values but checks whether two object references refer
to the same object.

13.2.5 Using Conditional Statements to Control Pro-
gram Execution

You can control the flow of your script with conditional statements and looping
statements. Using conditional statements, you can write VBScript code that
makes decisions and repeats actions. The following conditional statements are
available in VBScript:

Statement If...Then...Else
Statement Select Case

Arithmetic Comparison Logical

Description Symbol Description Symbol Description Symbol

Exponentiation ^ Equality = Logical negation Not

Unary negation - Inequality <> Logical conjunction And

Multiplication * Less than < Logical disjunction Or

Division / Greater than > Logical exclusion Xor

Integer division \ Less than or equal to <= Logical equivalence Eqv

Modulus arithmetic Mod
Greater than or
equal to

>= Logical implication Imp

Addition + Object equivalence Is

Subtraction -

String concatenation &
13–6 OPUS-NT Programming Bruker Optik GmbH

VBScript Language
Making Decissions Using If...Then...Else

The If...Then...Else statement is used to evaluate whether a condition is True or
False and, depending on the result, to specify one or more statements to run.
Usually the condition is an expression that employs a comparison operator to
compare one value or variable with another. If...Then...Else statements can be
nested to as many levels as you need.

Running Statements if a Condition is True

To run only one statement when a condition is True, use the single-line syntax
for the If...Then...Else statement. The following example shows the single-line
syntax. Note that this example omits the Else keyword.

 Sub FixDate()
 Dim myDate
 myDate = #2/13/95#
 If myDate < Now Then myDate = Now
 End Sub

To execute more than one line of code, the multiple-line (or block) syntax must
be used. This syntax includes the End If statement, as shown in the following
example:

 Sub AlertUser(value)
 If value = 0 Then
 AlertLabel.ForeColor = vbRed
 AlertLabel.Font.Bold = True
 AlertLabel.Font.Italic = True
 End If
 End Sub

Running Certain Statements if a Contidition is True

You can use an If...Then...Else statement to define two blocks of executable
statements: one block will be executed if the condition is True, the other block
to run if the condition is False.

 Sub AlertUser(value)
 If value = 0 Then
 AlertLabel.ForeColor = vbRed
 AlertLabel.Font.Bold = True
 AlertLabel.Font.Italic = True
 Else
 AlertLabel.Forecolor = vbBlack
 AlertLabel.Font.Bold = False
 AlertLabel.Font.Italic = False
 End If
 End Sub
Bruker Optik GmbH OPUS-NT Programming 13–7

Script Commands
Differentiating Between Several Alternatives

The If...Then...Else statement allows you to choose from several alternatives.
Adding the ElseIf clause expands the functionality of the If...Then...Else state-
ment and allows you to control program flow based on different possibilities:

 Sub ReportValue(value)
 If value = 0 Then
 MsgBox value
 ElseIf value = 1 Then
 MsgBox value
 ElseIf value = 2 then
 Msgbox value
 Else
 Msgbox "Wert außerhalb des Bereichs!"
 End If

Depending on your needs you can add as many ElseIf clauses as you want to
provide alternative choices. Extensive use of the ElseIf clauses often becomes
cumbersome. A better way to choose between several alternatives can bbe real-
ized with the Select Case statement.

Making Decisions with Select Case

The Select Case structure provides an alternative to If...Then...ElseIf for selec-
tively executing one block of statements from among multiple blocks of state-
ments. A Select Case statement provides capability similar to the
If...Then...Else statement, but it makes code more efficient and readable.

A Select Case structure works with a single test expression that is evaluated
once, at the top of the structure. The result of the expression is then compared
with the values for each Case in the structure. If there is a match, the block of
statements associated with that Case is executed:

 Select Case CardType
 Case "MasterCard"
 DisplayMCLogo
 ValidateMCAccount
 Case "Visa"
 DisplayVisaLogo
 ValidateVisaAccount
 Case "American Express"
 DisplayAMEXCOLogo
 ValidateAMEXCOAccount
 Case Else
 DisplayUnknownImage
 PromptAgain
End Select

Note that the Select Case structure evaluates an expression once at the top of the
structure. In contrast, the If...Then...ElseIf structure can evaluate a different
13–8 OPUS-NT Programming Bruker Optik GmbH

VBScript Language
expression for each ElseIf statement. You can replace an If...Then...ElseIf struc-
ture with a Select Case structure only if each ElseIf statement evaluates the
same expression.

13.2.6 Loops

Using loops allows you to repeat a group of statements. Some loops repeat
statements until a condition is False; others repeat statements until a condition is
True. There are also loops that repeat statements a specific number of times.

The following looping statements are available in VBScript:

• Do...Loop: loops while or until a condition is True.

• While...Wend: loops while a condition is True.

• For...Next: uses a counter to run statements a specified number of
times.

• For Each...Next: repeats a group of statements for each item in a col-
lection or each element of an array.

Using Do Loops

You can use Do...Loop statements to repeatedly run a block of statements. The
statements are repeated either while a condition is True or until a condition
becomes True.

Repeating Statements While a Condition is True

Use the While keyword to check a condition in a Do...Loop statement. You can
check the condition before you enter the loop (as shown in the following Chk-
FirstWhile example), or you can check it after the loop has run at least once (as
shown in the ChkLastWhile example). In the ChkFirstWhile procedure, if
myNum is set to 9 instead of 20, the statements inside the loop will never run. In
the ChkLastWhile procedure, the statements inside the loop run only once
because the condition is already False.

 Sub ChkFirstWhile()
 Dim counter, myNum
 counter = 0
 myNum = 20
 Do While myNum > 10
 myNum = myNum - 1
 counter = counter + 1
 Loop
 MsgBox "The Loop was repeated " & counter &
 " times."
 End Sub

 Sub ChkLastWhile()
 Dim counter, myNum
Bruker Optik GmbH OPUS-NT Programming 13–9

Script Commands
 counter = 0
 myNum = 9
 Do
 myNum = myNum - 1
 counter = counter + 1
 Loop While myNum > 10
 MsgBox "The Loop was repeated " & counter &
 " times."
 End Sub

Repeating a Statement Until a Condition Becomes True

You can use the Until keyword in two ways to check a condition in a Do...Loop
statement. You can check the condition before you enter the loop (as shown in
the following ChkFirstUntil example), or you can check it after the loop has run
at least once (as shown in the ChkLastUntil example). As long as the condition
is False, the looping occurs.

 Sub ChkFirstUntil()
 Dim counter, myNum
 counter = 0
 myNum = 20
 Do Until myNum = 10
 myNum = myNum - 1
 counter = counter + 1
 Loop
 MsgBox "The Loop was repeated " & counter &
 " times."
 End Sub

 Sub ChkLastUntil()
 Dim counter, myNum
 counter = 0
 myNum = 1
 Do
 myNum = myNum + 1
 counter = counter + 1
 Loop Until myNum = 10
 MsgBox "The Loop was repeated " & counter &
 " times."
 End Sub

Exiting a Do...Loop Statement from Inside the Loop

You can exit a Do...Loop by using the Exit Do statement. Because you usually
want to exit only in certain situations, such as to avoid an endless loop, you
should use the Exit Do statement in the True statement block of an
If...Then...Else statement. If the condition is False, the loop runs as usual.

In the following example, myNum is assigned a value that creates an endless
loop. The If...Then...Else statement checks for this condition, preventing the
endless repetition.
13–10 OPUS-NT Programming Bruker Optik GmbH

VBScript Language
Sub ExitExample()
 Dim counter, myNum
 counter = 0
 myNum = 9
 Do Until myNum = 10
 myNum = myNum - 1
 counter = counter + 1
 If myNum < 10 Then Exit Do
 Loop
 MsgBox "The Loop was repeated " & counter &
 " times."
 End Sub

13.2.6.1 Using While...Wend

The While...Wend statement is provided in VBScript for developers who are
familiar with its usage. However, because of the lack of flexibility in
While...Wend, it is recommended that you use Do...Loop instead.

Using For...Next

For...Next statements are used to run a block of statements a specific number of
times. For loops, use a counter variable whose value is increased or decreased
with each repetition of the loop.

For example, the following procedure causes a procedure called MyProc to be
executed 50 times. The For statement specifies the counter variable x and its
start and end values. The Next statement increments the counter variable by 1.

 Sub DoMyProc50Times()
 Dim x
 For x = 1 To 50
 MyProc
 Next
 End Sub

Using the Step keyword, you can increase or decrease the counter variable by
the value you specify. In the following example, the counter variable j is incre-
mented by 2 each time the loop repeats. When the loop is finished, total is the
sum of 2, 4, 6, 8, and 10.

 Sub TwosTotal()
 Dim j, total
 For j = 2 To 10 Step 2
 total = total + j
 Next
 MsgBox "Die Summe ist " & total
 End Sub

To decrease the counter variable, you use a negative Step value. You must
specify an end value that is less than the start value. In the following example,
Bruker Optik GmbH OPUS-NT Programming 13–11

Script Commands
the counter variable myNum is decreased by 2 each time the loop is repeated.
When the loop is finished, total is the sum of 16, 14, 12, 10, 8, 6, 4, and 2.

 Sub NewTotal()
 Dim myNum, total
 For myNum = 16 To 2 Step -2
 total = total + myNum
 Next
 MsgBox "The sum is " & total
 End Sub

You can exit any For...Next statement before the counter reaches its end value
by using the Exit For statement. Because you usually want to exit only in cer-
tain situations, such as when an error occurs, you should use the Exit For state-
ment in the True statement block of an If...Then...Else statement. If the
condition is False, the loop runs as usual.

Using For Each...Next

A For Each...Next loop is similar to a For...Next loop. Instead of repeating the
statements a specified number of times, a For Each...Next loop repeats a group
of statements for each item in a collection of objects or for each element of an
array. This is especially helpful if you don’t know how many elements are in a
collection.

13.2.7 VBScript Procedures

In VBScript there are two kinds of procedures; the Sub procedure and the Func-
tion procedure.

Sub Procedures

A sub procedure is a series of VBScript statements, enclosed by Sub and End
Sub statements, that perform actions but don’t return a value. A Sub procedure
can take arguments (constants, variables, or expressions that are passed by a
calling procedure). If a Sub procedure has no arguments, its Sub statement
must include an empty set of parentheses ().

The following Sub procedure uses two intrinsic (or built-in) VBScript func-
tions, MsgBox and InputBox, to prompt a user for some information. It then dis-
plays the results of a calculation based on that information. The calculation is
performed in a Function procedure created using VBScript. The Function pro-
cedure is shown after the following discussion.

 Sub ConvertTemp()
 temp = InputBox("Enter the Temperature in
 Fahrenheit.", 1)
 MsgBox "The Temperature is " & Celsius(temp) &
 " Degree Celsius."
 End Sub
13–12 OPUS-NT Programming Bruker Optik GmbH

VBScript Language
Function Procedures

A Function procedure is a series of VBScript statements enclosed by the Func-
tion and End Function statements. A Function procedure is similar to a Sub
procedure, but can also return a value. A Function procedure can take argu-
ments (constants, variables, or expressions that are passed to it by a calling pro-
cedure). If a Function procedure has no arguments, its Function statement must
include an empty set of parentheses. A Function returns a value by assigning a
value to its name in one or more statements of the procedure. The return type of
a Function is always a Variant.

In the following example, the Celsius function calculates degrees Celsius from
degrees Fahrenheit. When the function is called from the ConvertTemp Sub
procedure, a variable containing the argument value is passed to the function.
The result of the calculation is returned to the calling procedure and displayed
in a message box.

 Sub KonvertTemp()
 temp = InputBox("Enter the Temperature in
 Fahrenheit.", 1)
 MsgBox "The Temperature is " & Celsius(temp) &
 " Degree Celsius."
 End Sub

 Function Celsius(GradF)
 Celsius = (GradF - 32) * 5 / 9
 End Function

Forwarding Data To or From Procedures

Each piece of data is passed into your procedures using an argument. Argu-
ments serve as placeholders for the data you want to pass into your procedure.
When you create a procedure using either the Sub statement or the Function
statement, parentheses must be included after the name of the procedure. Any
arguments are placed inside these parentheses, separated by commas. For
example, in the following example, fDegrees is a placeholder for the value being
passed into the Celsius function for conversion:

 Function Celsius(fDegrees)
 Celsius = (fDegrees - 32) * 5 / 9
 End Function

To get data out of a procedure, you must use a Function. Remember, a Function
procedure can return a value; a Sub procedure can’t.

Using Sub and Function Procedures in Code

A Function in your code must always be used on the right side of a variable
assignment or in an expression. For example:
Bruker Optik GmbH OPUS-NT Programming 13–13

Script Commands
 Temp = Celsius(fDegrees)

or

 MsgBox "The temperature is " & Celsius(fDegrees) &
 " Degree Celsius."

To call a Sub procedure from another procedure, you can just type the name of
the procedure along with values for any required arguments, each separated by a
comma. The Call statement is not required, but if you do use it, you must
enclose any arguments in parentheses.

The following example shows two calls to the MyProc procedure. One uses the
Call statement in the code; the other doesn’t. Both do exactly the same thing.

 Call MyProc(firstArg, secondArg)
 MyProc firstArg, secondArg

Notice that the parentheses are omitted in the call when the Call statement isn’t
used.

13.2.8 VBScript Coding Converntions

Conventions for Programming

Coding conventions are suggestions that may help you write code using
Microsoft Visual Basic Scripting Edition. Coding conventions can include the
following:

• Naming conventions for objects, variables, and procedures

• Commenting conventions

• Text formatting and indenting guidelines

The main reason for using a consistent set of coding conventions is to standard-
ize the structure and coding style of a script or set of scripts so that you and oth-
ers can easily read and understand the code. Using good coding conventions
results in precise, readable, and unambiguous source code that is consistent with
other language conventions and as intuitive as possible.

Constant Naming Conventions

Earlier versions of VBScript had no mechanism for creating user-defined con-
stants. Constants, if used, were implemented as variables and distinguished
from other variables using all uppercase characters. Multiple words were sepa-
rated using the underscore (_) character. For example:

 USER_LIST_MAX
 NEW_LINE
13–14 OPUS-NT Programming Bruker Optik GmbH

VBScript Language
While this is still an acceptable way to indentify your constants, you may want
to use an alternative naming scheme, now that you can create true constants
using the Const statement. This convention uses a mixed-case format in which
constant names have a “con” prefix. For example:

 conYourOwnConstant

Variable Naming Conventions

For purposes of readability and consistency, use the following prefixes with
descriptive names for variables in your VBScript code.

Variable Scope

Variables should always be defined with the smallest scope possible. VBScript
variables can have the following scope.

Variable Scope Prefixes

As script size grows, so does the value of being able to quickly differentiate the
scope of variables. A one-letter scope prefix preceding the type prefix provides
this, without unduly increasing the size of variable names.

Subtype Prefix Example

Boolean bln BlnFound

Byte byt BytRasterData

Date (Time) dtm DtmStart

Double dbl DblTolerance

Error err ErrOrderNum

Integer int IntQuantity

Long lng LngDistance

Object obj ObjCurrent

Single sng SngAverage

String str StrFirstName

Scope Where Variabel Is Declared Visibility

Procedure Level Event, Function, or sub procedure
Visible in the procedure in which it
is declared.

Script Level
HEAD section of an HTML page,
outside any procedure.

Visible in every procedure in the
script.
Bruker Optik GmbH OPUS-NT Programming 13–15

Script Commands
Descriptive Variable and Procedure Names

The body of a variable or procedure name should use mixed case and should be
as complete as necessary to describe its purpose. In addition, procedure names
should begin with a verb, such as InitNameArray or CloseDialog.

For frequently used or long terms, standard abbreviations are recommended to
help keep name length reasonable. In general, variable names greater than 32
characters can be difficult to read. When using abbreviations, make sure they
are consistent throughout the entire script. For example, randomly switching
between Cnt and Count within a script or set of scripts may lead to confusion.

Object Naming Conventions

The following table lists recommended conventions for objects you may
encounter while programming VBScript.

Code Commenting Conventions

All procedures should begin with a brief comment describing what they do.
This description should not describe the implementation details (how it does it)

Subtype Prefix Example

Procedure Level None dblVelocity

Script Level s sblnCalcInWork

Object type Prefix Example

CheckBox chk chkReadOnly

ComboBox, drop-down ListBox cbo cboDeutsch

CommandButton cmd cmdExit

CommonDialog dlg dlgFileOpen

Frame fra fraLanguage

horizontal ScrollBar hsb hsbVolume

Image img imgIcon

Label lbl lblHelpMessage

Line lin linVertical

ListBox lst lstPolicyCodes

Spin spn spnPages

TextBox txt spnLastName

vertical ScrollBar vsb vsbRate

Slider sld sldScale
13–16 OPUS-NT Programming Bruker Optik GmbH

VBScript Language
because these often change over time, resulting in unnecessary comment main-
tenance work, or worse, erroneous comments. The code itself and any neces-
sary inline comments describe the implementation.

Arguments passed to a procedure should be described when their purpose is not
obvious and when the procedure expects the arguments to be in a specific range.
Return values for functions and variables that are changed by a procedure, espe-
cially through reference arguments, should also be described at the beginning of
each procedure.

Procedure header comments should include the following section headings. For
examples, see the “Formatting Your Code” section that follows.

The following points should be taken into account:

• Every important variable declaration should include an inline com-
ment describing the use of the variable being declared.

• Variables, controls, and procedures should be named clearly enough
that inline comments are only needed for complex implementation
details.

• At the beginning of your script, you should include an overview that
describes the script, enumerating objects, procedures, algorithms,
dialog boxes, and other system dependencies. Sometimes a piece of
pseudocode describing the algorithm can be helpful.

Formatting Your Code

Screen space should be conserved as much as possible, while still allowing code
formatting to reflect logic structure and nesting. Here are a few pointers:

• Standard nested blocks should be indented four spaces.

• The overview comments of a procedure should be indented one
space.

• The highest level statements that follow the overview comments
should be indented four spaces, with each nested block indented an
additional four spaces.

Section Heading Comment Contents

Purpose What the procedure does (not how).

Assumptions
List of any external variable, control, or other element whose state
affects this procedure.

Effects
List of the procedure’s effect on each external variable, control, or
other element.

Inputs
Explanation of each argument that isn’t obvious. Each argument
should be on a separate line with inline comments.

Return Values Explanation of the value returned.
Bruker Optik GmbH OPUS-NT Programming 13–17

Script Commands
13.2.9 VBScript Functions

A complete reference of all available VBScript functions is beyond the scope of
this manual. The functions listed in the following are only a part of what is
available in the full edition of VisualBasic. If a function also exists in
VBScript, it is used similar; a description can be taken from the VisualBasic
documentation. Hence we restrict the following list to all functions that are also
available in VBScript.

Control Flow

Do...Loop
For...Next
For Each...Next
If...Then...Else
Select Case
While...Wend
Array
Dim, Private, Public, ReDim
IsArray
Erase
LBound, UBound

Dates/Times

Date, Time
DateAdd, DateDiff, DatePart
DateSerial, DateValue
Day, Month, Weekday, WeekdayName, Year
Hour, Minute, Second
Now
TimeSerial, TimeValue

Declarations

Const
Dim, Private, Public, ReDim
Function, Sub

Input/Output

InputBox
LoadPicture
MsgBox
13–18 OPUS-NT Programming Bruker Optik GmbH

VBScript Language
Error Handling

On Error
Err

Comments

Comments using ’ or Rem

Constants/Literals

Empty
Nothing
Null
True, False

Conversions

Abs
Asc, AscB, AscW
Chr, ChrB, ChrW
CBool, CByte
CCur, CDate
CDbl, CInt
CLng, CSng, CStr
DateSerial, DateValue
Hex, Oct
Fix, Int
Sgn
TimeSerial, TimeValue

Literals

Empty
False
Nothing
Null
True

 Math

Atn, Cos, Sin, Tan
Exp, Log, Sqr
Randomize, Rnd
Bruker Optik GmbH OPUS-NT Programming 13–19

Script Commands
 Objects

CreateObject
Err-Objekt
GetObject

Operators

Addition (+), Subtraction (-)
Exponentiation (^)
Modulo arithmetic (Mod)
Multiplication (*), Division (/), Integer Division (\)
Negation (-)
String Concatenation (&)
Equality (=), Inequality (<>)
Less Than (<), Less Than or Equal To (<=)
Greater Than (>), Greater Than or Equal To(>=)
Is
And, Or, Xor
Eqv, Imp

Options

Option Explicit

Procedures

Call
Function, Sub

Rounding

Abs
Int, Fix, Round
Sgn

Script Engine ID

ScriptEngine
ScriptEngineBuildVersion
ScriptEngineMajorVersion
ScriptEngineMinorVersion

Variants

IsArray
IsDate
13–20 OPUS-NT Programming Bruker Optik GmbH

VBScript Language
IsEmpty
IsNull
IsNumeric
IsObject
TypeName
VarType

Miscellaneous

RGB-Functions

Strings

Asc, AscB, AscW
Chr, ChrB, ChrW
Filter, InStr, InStrB
InStrRev
Join
Len, LenB
LCase, UCase
Left, LeftB
Mid, MidB
Right, RightB
Replace
Space
Split
StrComp
String
StrReverse
LTrim, RTrim, Trim

Formatting Strings

FormatCurrency
FormatDateTime
FormatNumber
FormatPercent

Assignments

Set

13.2.10 File and System Handling

Files are accessed via the objects of the VBScript run time library, which pro-
vides the following objects: Dictionary, Drive, File, Folder, FileSystemObjekt,
TextStream. These in turn provide the functions listed here.
Bruker Optik GmbH OPUS-NT Programming 13–21

Script Commands
Dictionary

Add
Exists
Items
Keys
Remove
RemoveAll
Count
Item
Key

Drive, File, Folder

Copy
Delete
Move
OpenAsTextStream
Attributes
Count
DateCreated
DateLastAccessed
DateLastModified
Drive
ParentFolder
Name
Path
ShortName
ShortPath
Size
AvailableSpace
DriveLetter
DriveType
FileSystem
FreeSpace
IsReady
RootFolder
SerialNumber
ShareName
TotalSize
VolumeName

FileSystemObject

BuildPath
CopyFile
CopyFolder
13–22 OPUS-NT Programming Bruker Optik GmbH

JavaScript
CreateFolder
CreateTextFile
DeleteFile
DeleteFolder
DriveExists
FileExists
FolderExists
GetAbsolutePathName
GetBaseName
GetDrive
GetDriveName
GetExtensionName
GetFile
GetFileName
GetFolder
GetParentFolderName
GetSpecialFolder
GetTempName
MoveFile
MoveFolder
OpenTextFile
Drives

TextStream

Close
Read
ReadAll
ReadLine
Skip
SkipLine
Write
WriteBlankLines
WriteLine
AtEndOfLine
AtEndOfStream
Column
Line

13.3 JavaScript

JavaScript will also be processed by the OPUS Scripting Engine, in this manual
however we document and support mainly VBScript in view of a uniform use.
If you prefer JavaScript you find a good introduction and reference on the fol-
lowing web pages.
Bruker Optik GmbH OPUS-NT Programming 13–23

Script Commands
http://msdn.microsoft.com/scripting/default.htm?/
scripting/jscript/default.htm

Regrettably, most documentation is oriented towards using scripts for the
design of HTML pages.

13.4 Functions/Events of Forms

The functions and events of an OPUS script form have already been used to
transmit commands to OPUS. In the following you will find an extensive list of
all available functions and events:

Visible

Property of the form, indicates whether the form is visible or not, can either
have the value true or false.

Show

Method to visualize the form.

Hide

Method to hide the form.

Close

Method to close the form and end the script.

Enable

Enables input to the form by keyboard or mouse, in combination with a parame-
ter true or false.

Minimize

Method to minimize the form.

Maximize

Method to maximize the form.

Restore

Method to reset the size of the form to its initial value.
13–24 OPUS-NT Programming Bruker Optik GmbH

Functions/Events of Forms
GetApp

Returns an object of type application. This object represents the OPUS applica-
tion and in turn provides functions for the handling of forms. This allows to
address other forms dynamically, create new scripts from a running script, and
exchange data with them.

OpenForm

Opens a new form, the name of the script file (including the path) has to
be specified. You can indicate (with the values true or false) if a script
should be used which was already opened and if the file should be opened
in edit mode.

NewForm

Opens a new, blank form.

FormByName

Returns an interface to a form object already running. The internal form
name is transferred as the parameter. The form name is listed as ID in the
forms Properties.

Caption

Caption reads or writes a text as title in the window of the form.

DoEvents

DoEvents hands the process control over to the system until the system has pro-
cessed all pending events (like paint messages).

Caution! Each time the process control is temporarily transferred to another
thread, care has to be taken that the procedure will not be called by any part of
the code, before the first call is terminated. Otherwise the results are unpredict-
able.

OpusCommand

Function to start OPUS commands. The function returns immediately after
transmitting the text command. The command is then processed by OPUS and
then the result forwarded to the form by means of an OnOpusResult event.

OpusExecute

Executes an OPUS command. The command will run as background task and
the result will not be returned.
Bruker Optik GmbH OPUS-NT Programming 13–25

Script Commands
OpusRequest

Executes an OPUS command and waits until OPUS has finished the command
processing. The result will be returned directly as text. While normally only a
single event is being processed at a time, this function allows processing of
additional events until OPUS returns its result. The execution of the event
which calls OpusRequest is postponed until OPUS answers. Events, which are
normally called after this procedure may have already been executed. The con-
sequences of the independent time lines have to be taken into account in the
script.

OpusRequestData

Sends commands to OPUS, similar to OpusRequest. In addition, a data array
parameter is exchanged. This parameter is able to transfer a data field to OPUS
or to receive binary data from OPUS. Like in the case of OpusRequest precau-
tions have to be taken to avoid unwanted side effects resulting from parallel
data processing.

SetWindowPos

Positions and dimensions a window using four coordinates: x, y, dx, dy.

SetResult

Sets the result of a script as text, to be transmitted to the requesting OPUS func-
tion upon closing the script. To make use of this result, the script has to be
called using the OPUS VisualBasic Script funtion.

GetDocName

Returns the name including path of the active script. Makes it possible to run a
script on different machines by referring to relative path statements. This com-
mand becomes first available after the form has been loaded (and not upon load-
ing the form).

HideControl

Hides a control element. The name of the object in the form has to be stated
(e.g. CommandButton1).

ShowControl

Reveals a hidden control element. The name of the element has to be stated in
the form (i.e. CommandButton 1).
13–26 OPUS-NT Programming Bruker Optik GmbH

Microsoft Forms
OnLoad

Event which is triggered upon loading a form.

OnUnLoad

Event which is triggered upon unloading a form.

OnOpusResult

Event which is triggered after an OPUS command has been processed. Three
text fields and if necessary a binary data array will be returned. The contents of
the text fields may vary with the function executed; the first string usually is the
“OK” statement or an error statement, that indicates whether the command
could be processed successfully. The other fields contain the result. If an
OPUS data manipulation function has been started with a text command, the
first parameter holds the names (numbers) of the resulting files and the second
parameter and return values. If binary data transfer was chosen, the fourth
parameter contains the data array.

OnOpusInform

This function is used by OPUS to transmit a parameter to a script. If for exam-
ple the function VisualBasic Script is called in combination with script parame-
ters, an OnOpusInform event is triggered at the start of the program. The text is
forwarded to the event handling routine as a parameter.

This event is also employed for the Automatic Accessory Recognition; if an
accessory with AAR support is inserted into the spectrometer the accessory
code will be transferred to a special script.

13.5 Microsoft Forms

Microsoft Forms are control elements that can be used to create and modify cus-
tom forms and dialog boxes. They are also used to create VisualBasic for
Application Forms in Microsoft Word. This chapter gives a brief overview of
the existing elements their use.

All functionalities of these controls can be classified to one of the following cat-
egories:

Properties – By opening the Properties dialog of an element in the Form Editor
you can find out which properties and values are supported by this element. All
available properties will be listed. Usually, they can also be set or read from the
program.
Bruker Optik GmbH OPUS-NT Programming 13–27

Script Commands
Events and related handling routines – An event box in the Code/Modules view
shows which events can occur for an object. Here, all required functions can be
created.

Methods – Elements use methods to independently process certain tasks. Since
no selection box exist for the methods, short lists are is presented here. An
extensive treatment can be found in Microsofts documentation.

13.5.1 Checkbox

Displays the selection state of an item. Use a CheckBox to give the user a
choice between two values such as Yes/No, True/False, or On/Off. When the
user selects a CheckBox, it displays a special mark (such as an X) and its cur-
rent setting is Yes, True, or On; if the user does not select the CheckBox, it is
empty and its setting is No, False, or Off. Depending on the value of the Tri-
pleState property, a CheckBox can also have a null value.

13.5.2 Combobox Control

Combines the features of a ListBox and a TextBox. The user can enter a new
value, as with a TextBox, or the user can select an existing value as with a List-
Box.

Supported Methods:

AddItem
Clear
DropDown
RemoveItem
Copy
Cut
Paste

13.5.3 CommandButton

Starts, ends, or interrupts an action or series of actions. The macro or event pro-
cedure assigned to the CommandButton's click event determines what the Com-
mandButton does. For example, you can create a CommandButton that opens
another form. You can also display text, a picture, or both on a CommandBut-
ton.

13.5.4 Frame Control

Creates a functional and visual control group. All option buttons in a Frame are
mutually exclusive, so you can use the Frame to create an option group. You
can also use a Frame to group controls with closely related contents. For exam-
ple, in an application that processes customer orders, you might use a Frame to
group the name, address, and account number of customers.
13–28 OPUS-NT Programming Bruker Optik GmbH

Microsoft Forms
You can also use a Frame to create a group of toggle buttons, but the toggle but-
tons are not mutually exclusive.

Supported Methods:

Copy
Cut
Paste
RedoAction
Repaint
Scroll
SetDefaultTabOrder
UndoAction

13.5.5 Image Control

Displays a picture on a form. The Image lets you display a picture as part of the
data in a form. For example, you might use an Image to display employee pho-
tographs in a personnel form.

The Image lets you crop, size, or zoom a picture, but does not allow you to edit
the contents of the picture. For example, you cannot use the Image to change
the colors in the picture, to make the picture transparent, or to refine the image
of the picture. You must use image editing software for these purposes

13.5.6 Label Control

Displays descriptive text. A Label control on a form displays descriptive text
such as titles, captions, pictures, or brief instructions.

13.5.7 ListBox Control

Displays a list of values and lets you select one or more. If the ListBox is bound
to a data source, then the ListBox stores the selected value in that data source.

The ListBox can either appear as a list or as a group of OptionButton controls or
CheckBox controls.

Supported Methods:

AddItem
Clear
RemoveItem

13.5.8 Multipage Control

Presents multiple screens of information as a single set. A MultiPage is useful
when you work with a large amount of information that can be sorted into sev-
eral categories. For example, use a MultiPage to display information from an
employment application. One page might contain personal information such as
Bruker Optik GmbH OPUS-NT Programming 13–29

Script Commands
name and address; another page might list previous employers; a third page
might list references. The MultiPage lets you visually combine related informa-
tion, while keeping the entire record readily accessible.

New pages are added to the right of the currently selected page rather than adja-
cent to it.

Note: The MultiPage is a container of a Pages collection, each of which con-
tains one or more Page objects.

13.5.9 OptionButton Control

Shows the selection status of one item in a group of choices. Use an OptionBut-
ton to show whether a single item in a group is selected. Note that each Option-
Button in a Frame is mutually exclusive.

If an OptionButton is bound to a data source, the OptionButton can show the
value of that data source as either Yes/No, True/False, or On/Off. If the user
selects the OptionButton, the current setting is Yes, True, or On; if the user does
not select the OptionButton, the setting is No, False, or Off.

Depending on the value of the TripleState property, an OptionButton can also
have a null value.

You can also use an OptionButton inside a group box to select one or more of a
group of related items.

13.5.10 ScrollBar Control

Returns or sets the value of another control based on the position of the scroll
box. A ScrollBar is a stand-alone control you can place on a form. It is visually
like the scroll bar you see in certain objects such as a ListBox or the drop-down
portion of a ComboBox. However, unlike the scroll bars in these examples, the
stand-alone ScrollBar is not an integral part of any other control.

To use the ScrollBar to set or read the value of another control, you must write
code for the ScrollBar’s events and methods. For example, to use the ScrollBar
to update the value of a TextBox, you can write code that reads the Value prop-
erty of the ScrollBar and then sets the Value property of the TextBox.

Note: To create a horizontal or vertical ScrollBar, drag the sizing handles of the
ScrollBar horizontally or vertically on the form.

13.5.11 SpinButton Control

Increments and decrements numbers. Clicking a SpinButton changes only the
value of the SpinButton. You can write code that uses the SpinButton to update
the displayed value of another control. For example, you can use a SpinButton
13–30 OPUS-NT Programming Bruker Optik GmbH

Microsoft Forms
to change the month, the day, or the year shown on a date. You can also use a
SpinButton to scroll through a range of values or a list of items, or to change the
value displayed in a text box.

To display a value updated by a SpinButton, you must assign the value of the
SpinButton to the displayed portion of a control, such as the Caption property of
a Label or the Text property of a TextBox. To create a horizontal or vertical
SpinButton, drag the sizing handles of the SpinButton horizontally or vertically
on the form.

13.5.12 TabStrip Control

Presents a set of related controls as a visual group. You can use a TabStrip to
view different sets of information for related controls.

Note: The TabStrip is implemented as a container of a Tabs collection, which in
turn contains a group of Tab objects.

13.5.13 TextBox Control

Displays information from a user or from an organized set of data. A TextBox
is the control most commonly used to display information entered by a user.
Also, it can display a set of data, such as a table, query, worksheet, or a calcula-
tion result. If a TextBox is bound to a data source, then changing the contents
of the TextBox also changes the value of the bound data source.

Formatting applied to any piece of text in a TextBox will affect all text in the
control. For example, if you change the font or point size of any character in the
control, the change will affect all characters in the control.

Supported Methods:

Copy
Cut
Paste

13.5.14 ToggleButton Control

Shows the selection state of an item. Use a ToggleButton to show whether an
item is selected. If a ToggleButton is bound to a data source, the ToggleButton
shows the current value of that data source as either Yes/No, True/False, On/
Off, or some other choice of two settings. If the user selects the ToggleButton,
the current setting is Yes, True, or On; if the user does not select the ToggleBut-
ton, the setting is No, False, or Off. If the ToggleButton is bound to a data
source, changing the setting changes the value of that data source. A disabled
ToggleButton shows a value, but is dimmed and does not allow changes from
the user interface.
Bruker Optik GmbH OPUS-NT Programming 13–31

Script Commands
You can also use a ToggleButton inside a Frame to select one or more of a
group of related items.

13.5.15 Timer Control

Although the Timer Control is rather a part of the Internet Explorer we list it
here, because it is used in a similar manner. It serves to call functions after pre-
defined periods of time.

Supported Methods:

AboutBox

13.5.16 Debugging Scripts

To debug OPUS scripts in single-step mode you should preferably use an uni-
versal script debugger. On its home page Microsoft offers a freeware version of
a script debugger. We also recommend the InterDev packet which is part of the
Microsoft Visual Studio. This software, if installed, it will automatically open
when an error in an OPUS script occurs. You can view and edit variables, and
process lines step-by-step. If the script is intended to run from the start in the
debugger, insert a stop command at the beginning of the script.
13–32 OPUS-NT Programming Bruker Optik GmbH

Index
Numerics

2D Correlation 11-15, 11-18
3D Files 2-1, 11-3

A

AB/TR conversion 11-19
Abort Macro 5-12
ABTR 10-8
ACTIVATE_DIALOG 12-44
Active X 4-1
Add Variable Button 5-4
Arguments 9-6
Arrays 5-10, 9-2, 13-4
ASCII 12-9
Assemble GC 11-12
Autocorrect 5-2
Average 6-36, 6-39, 10-9
Averaging 11-17

B

Baseline Correction 6-6, 6-8, 6-11, 6-13, 6-
17, 6-18, 6-20, 6-27, 6-29, 6-31, 6-32, 6-33,
6-34, 6-60, 10-10, 11-18
Batch files 2-1
BINARY 12-9
Black Body 11-16
BlackBody 10-10
BUTTON 12-20
Buttons 8-1
BYTE_MODE 12-27

C

C/S Commands
obsolete 12-25
old 12-2

Calculations 5-19
CallMacro 6-68, 6-71, 9-15
Caption 13-25
CarbOx Analysis 11-19
Change Output File 5-14
ChangeDataBlockType 10-21
Checkbox 13-28
Client program 7-4
Client/Server Commands 7-5, 12-1

New 12-27
Client/Server function 5-20
Client/Server Interpreter 12-1, 13-1
Clonecount 3-1, 12-4

Close 13-24
CLOSE_OPUS 12-41
CLOSE_PIPE 12-3
CLOSE_WINDOW 12-31
CloseDisplayWindow 9-32
Cluster Analysis 11-16
COMBOBOX 12-20
Combobox 5-17, 13-28
Command Buttons 6-3
Command Line 3-1, 5-1, 9-6
Command Line Arguments 2-4
Command Line Parameters 4-1
Command Lines 5-8
COMMAND_LINE 12-43
COMMAND_MODE 12-40
COMMAND_SAY 12-35
CommandButton 13-28
Commands

script 13-1
Communication 2-3, 3-2, 7-1

Command Processing 7-2
Error Handling 7-3
Establishing 7-5
Initialization 7-1
Notification 7-3
Parameters 11-24
Program Termination 7-4
Reading Data 7-8
time behaviour 12-20

Compare Spectra 11-15
Compile 5-13
Conditional Statements 13-6
Conformity Test 11-12
Conversion Functions 5-21
Convert 10-10
Convert Spectra 11-19
Copy 9-29
COPY_DATA 12-16
CopyDataBlock 10-21
COUNT_ENTRIES 12-3
Curve Fitting 11-14
Cut 10-11, 11-19

D

Data 2-7
Data Acquisition Parameters 11-4
Data Blocks 3-1, 5-17
Data Block-Specific Parameters 11-1
Data Manipulation 7-7

Data Path Parameters 11-21
DATA_POINTS 12-10
DATA_VALUES 12-9
DDE Client 3-2, 4-1
DDE Command Page 2-6
DDE communication 7-1
DDE Connection 8-6, 12-27
DDE connection 8-6
DDE Server 1-1, 2-8, 3-2, 4-1
Decissions 13-7
Deconvolution 10-11, 11-14
Delete 6-75, 9-30
DeleteDataBlock 10-21
Derivative 10-12, 11-2
Derivatives 11-2
Display Functions 9-31
Display Limits 11-18
DisplaySpectrum 9-32
DMA Extraction 11-15
Do...Loop 13-10
DoEvents 13-25
DOUBLE_MODE 12-28
Drop-down lists 5-4
Dynamic Data Exchange 2-3

E

Edit Parameter 6-41, 6-43
Else 6-55, 6-60, 6-65
Enable 13-24
Endif 6-55, 6-60, 6-65
EndLoop 6-8, 6-11, 6-13, 6-20, 6-27, 6-33,
6-34, 6-36, 6-39, 6-47, 6-61, 6-71, 6-75, 9-
17
Enter Expression 5-5, 9-23
Epi Analysis 11-19
Events 8-2
Execute 2-7
Execute DDE Transaction 2-6
EXECUTE_MODE 12-40
Expression 9-23
External Program 2-1, 4-1, 5-21, 7-1, 11-25

File 2-4
Name 2-4
Parameters 2-4

External Program Command 2-2
ExternalProgram 10-33
Extrapolation 10-12, 11-22

F

FFT 10-12
File Functions 9-27
File Handling 5-17
FILE_PARAMETERS 12-20
Files for VB Script 2-10
FindString 6-55, 9-14
FLOAT_MODE 12-28
FLOATCONV_MODE 12-29
Flow Control 1-1, 6-3
Flow Control Functions 9-16
For Each...Next 13-12
For...Next 13-11
Form Editor 2-10
FormByName 13-25
Forms 8-1, 13-24
Fourier Transformation 11-13
Frame Control 13-28
FreqCalibration 10-14
Frequency Calibration 11-3, 11-18
FromReportHeader 6-47, 6-71, 9-24
FromReportMatrix 6-47, 9-25
FT-Parameters 11-9
Function Procedures 13-13

G

Generate Straight Line 11-19
GET_BASEPATH 12-33
GET_BENCH 12-34
GET_DATAPATH 12-33
GET_DISPLAY 12-29
GET_LANGUAGE 12-32
GET_OPUSPATH 12-32
GET_USERNAME 12-34
GET_USERRIGHTS 12-45
GET_WORKPATH 12-33
GetApp 13-25
GetArrayCount 6-27, 9-13
GetDisplayLimits 9-33
GetDocName 13-26
GetEnumList 9-25, 9-26
GetLength 9-14
GetMacroPath 6-68, 6-71, 9-13
GetOpusPath 6-18, 6-20, 9-12
GetParameter 6-41, 6-43, 9-24
GetTime 6-61, 6-64, 6-65, 9-30, 9-31
GetUserPath 9-12, 9-13
GetVersion 9-13
Goto 6-51, 6-53, 6-65, 9-17

GRAMS Export 11-21

H

HEADER_ELEMENT 12-39
HEADER_INFO 12-36
HEXSTRING_MODE 12-28
Hidden 2-9
Hide 13-24
HideControl 13-26

I

Identitity Test 11-15
If 6-55, 6-60, 6-65, 9-18
If ... Else ... Endif 9-18
Image Control 13-29
Info Parameters 11-21
InfoInput 10-31
Information Input 6-43, 6-46
Input Functions 9-22
Instrument Parameters 11-3
INT_MODE 12-27
Integration 10-19, 11-20
Interface 1-1, 2-1, 7-4, 12-1
Inverse FT 11-14
InverseFT 10-14
Item 2-7

J

Java Script 2-8
JavaScript 8-9, 13-23
JCAMP Parameters 11-24
JCAMP Setup 11-21
Jump Instructions 5-19

K

Keywords 5-1, 9-7
KILL_MACRO 12-24
KramersKronig 10-15
Kramers-Kronig Transformation 11-14

L

Label 6-51, 6-53, 9-17
Label Control 13-29
Language 5-1
LibraryEdit 10-30
LibraryInitialize 10-29
LibrarySearchInfo 10-25
LibrarySearchSpectrum 10-27

LibrarySearchStructure 10-27
LibraryStore 10-29
ListBox Control 13-29
Load 6-17, 6-18, 6-27, 6-60
LOAD_EXPERIMENT 12-44
LOAD_FILE 12-17
LoadFile 6-20, 9-28
LoadReference 10-24
Log File 5-15
Loops 5-20, 13-9

M

Macro Converter 5-13
Macro Editor 5-2, 6-1
Macro Parameters 11-21
MACRO_RESULTS 12-23
Macros 2-8, 3-2, 5-1

aborting 5-12
automatic stop 5-13
conversion 5-13
debugging 5-11
execution 5-9
included in Tool Bar 2-11
including OPUS commands 10-1
OS/2 5-14
portable 5-21
Single Step 5-11
Stop Marks 5-12
sub routine calls 5-11
syntax 5-1, 6-1
time behaviour 5-19
writing 5-1, 5-2, 6-1

Make Compatible 11-19
MakeCompatible 10-15
Manipulate GC Blocks 11-23
MATRIX_ELEMENT 12-38
MATRIX_INFO 12-37
Maximize 13-24
MEASURE_SAMPLE 12-42
Measurement 6-3, 6-6, 6-8, 6-11, 6-13, 8-4,
10-23
Measurement Commands 5-16, 10-4
Merge 10-16
Message 6-11, 6-13, 6-47, 6-51, 6-53, 6-55,
6-60, 6-64, 6-65, 6-67, 6-68, 6-71, 6-75, 9-
20
Microsoft Forms 2-8, 13-27
Microsoft Scripting Engine 2-8
Minimize 13-24

Miscellaneous OPUS Functions 10-33
Multipage Control 13-29

N

Named Pipe 2-3, 2-7, 3-2, 5-21, 7-4
NEW_WINDOW 12-30
NewForm 13-25
Normalization 6-17, 6-18, 6-20, 6-27, 11-18
Normalize 6-60, 10-16

O

Objects 8-2
OLE Interface 1-1, 4-1
OnLoad 13-27
OnOpusInform 13-27
OnOpusResult 13-27
OnUnLoad 13-27
OpenDisplayWindow 9-32
OpenForm 13-25
OptionButton Control 13-30
OPUS Commands 5-7, 10-1
OPUS Evaluation Functions 10-19
OPUS File Functions 10-21
OPUS Files 2-1
OPUS Functions 3-1, 8-4

Syntax 10-1
OPUS functions 3-1
OPUS Library Functions 10-25
OPUS Manipulation Functions 10-8
OPUS Measurement Functions 10-23
OPUS Task 2-6
OPUS_PARAMETERS 12-21
OpusCommand 13-25
OpusExecute 13-25
OPUS-OS/2 2-1, 5-17, 7-10, 12-2
OpusRequest 13-26
OpusRequestData 13-26
Output Functions 9-26
OVERWRITE 12-25

P

PACKET_AVAILABLE 12-45
Parameter for the Library Search 11-23
Parameter List 9-7
PARAMETER SECTION 5-1, 9-1, 9-7
ParameterEditor 10-34
Parameters 2-4, 2-10, 3-1, 5-8, 12-2

assigning 5-18
Reference 11-1

Parameters for Post-Run Extraction 11-21
Parameters of OPUS Functions 11-11
Parameters of the Optics 11-11
Path 2-3, 5-22
Peak Picking 6-6, 6-8, 6-11, 6-13, 6-34, 6-
48, 6-71, 11-16
PeakPick 10-19
Pipe Parameters 11-25
Plot 6-78, 10-35
Plot Parameters 11-25
Plot Report Parameters 11-20
Poke 2-6
POSITION_WINDOW 12-31
Post-FT ZFF 11-13
PostFTZerofill 10-16
Post-Search Specturm Extraction 11-3
PRESERVE 12-25
Print 5-19
PrintToFile 9-27
Procedures

Forwarding Data 13-13
PROGRAM SECTION 5-1, 9-1, 9-6
Program Settings Page 2-5
Program Termination 2-6, 5-21
Programming languages 2-8

Q

Quality Test 11-17
Quant 11-20

R

Raman Correction 11-17
RamanCorrection 10-17
Rapid Scan TRS 11-24
Read Datapoint Table 11-24
READ_DATA 12-12
READ_FROM_BLOCK 12-7
READ_FROM_ENTRY 12-4
READ_FROM_FILE 12-5
READ_HEADER 12-10
READ_PARAMETER 12-21
ReadTextFile 9-25
REM 5-1
Rename 9-30
Report blocks 2-1
REPORT_INFO 12-36
Request 2-7
REQUEST_MODE 12-41
Restore 10-21, 13-24

Return Value 9-7, 12-2
Run to Breakpoint 5-12
RUN_MACRO 12-22
RunMacro 6-67

S

S/N Ratio 11-3, 11-11
Sample Parameters 11-1
Save 6-32, 10-22, 11-24
Save As 6-32, 11-24
SaveAs 10-22
SaveReference 10-24
SaveVars 9-15
Scalar Data 13-4
ScanPath 6-27, 9-29
Script 2-9
Script Commands 13-1
Script Termination 2-9
Scripting Editor 2-10, 8-1, 8-9
Scripting Engine 13-23
Scripting Interface 3-2
Scripts

access 2-8
auto-start 2-12

ScrollBar Control 13-30
Search Command 5-3
Search Variable 5-3
Select File/Program 2-3
Select Files/Script Page 2-9
Send File 11-24
SendCommand 10-24
SendFile 10-23
Server Name 2-7
SET_WINDOW 12-30
SetColor 9-33
SetDisplayLimits 9-33
SetResult 13-26
SetWindowPos 13-26
Show 13-24
ShowControl 13-26
SignalToNoise 10-20
Simulation 11-21
Smooth 10-17
Smoothing 11-2, 11-15
Special Macro Commands 5-4, 6-9
Spectral Data 8-7
Spectrum Calculator 6-71, 11-19
SpinButton Control 13-30
Spreadsheets 8-5

Standard Parameters 11-1
Start Program Checkbox 2-4
START_MACRO 12-18
StartLoop 6-8, 6-11, 6-13, 6-20, 6-27, 6-33,
6-34, 6-36, 6-39, 6-47, 6-61, 6-71, 6-75, 9-
16
StaticMessage 6-61, 9-21
Step into Submacro 5-12
Stop Mark 5-12
STOP_THREAD 12-43
StraightLine 10-18
Strings 5-1
Sub Procedures 13-12
Sub Routines 5-11, 5-16
Subtract 10-18, 11-12
Symmetric FT 11-14
System Directories 5-18
System Functions 9-12
System Variables 5-15

T

TabStrip Control 13-31
TAKE_REFERENCE 12-41
Temperature Control 11-23
TextBox Control 13-31
TextToFile 6-75, 9-26
Time behaviour 8-6
Time Control Functions 9-30
TIMEOUT 12-26
Timer 6-61, 6-64, 6-65, 9-31
Timer Control 13-32
ToggleButton Control 13-31
Tool Bar 2-11
Tool bar 5-2
Topic 2-7
Trace Calculation 11-22

U

UnDisplaySpectrum 9-33
Unload 6-32, 10-23
UNLOAD_FILE 12-17
UPDATE_BENCH 12-35
User Dialog 6-53
User Interface Functions 9-20
User-Defined Labels 11-2
UserDialog 5-20, 6-13, 6-18, 6-20, 6-27, 6-
31, 6-32, 6-33, 6-34, 6-36, 6-41, 6-43, 6-51,
6-55, 6-60, 6-68, 6-71, 6-77, 9-21, 9-22

V

Variable Dialog Box 5-6
Variables 5-1, 5-17, 6-1

array 9-3
boolean 6-2
BUTTON 9-4
Constants 13-5
declaration 5-3, 9-2
FILE 9-3
file 6-2
Life Time 13-3
Names 13-3
numerical 6-2
Scope 13-15
selection 5-17
text 6-2
type 6-2, 9-1
type conversion 6-3
update 9-4
Validity 13-3
Values 13-3
VBScript 13-2

VARIABLES SECTION 5-1, 9-1
Variant 13-1
VBScript 2-1, 2-8, 8-1, 10-36, 13-1

Coding Converntions 13-14
Constants 13-14
Data Types 13-1
File Handling 13-21
Functions 13-18
Objects 13-16
Operators 13-5
Prozedures 13-12
System Handling 13-21
Variables 13-15

VBScripts
Debugging 13-32

Virtual Dos Machine 2-5
Visible 13-24
VisualBasic 7-1

W

Wavenumber conversion 11-20
While...Wend 13-11
Windows 2-1, 2-5, 5-2, 8-2
Write Datapoint Table 11-24
WRITE_DATA 12-14
WRITE_HEADER 12-13
WRITE_PARAMETER 12-22

WRITE_TO_BLOCK 12-8
WRITE_TO_ENTRY 12-5
WRITE_TO_FILE 12-6
Writing software 2-7

X

x Point Adaption 11-22

	1 Programming, Controlling and Communication with OPUS-NT 1-1
	1.1 Methods of Flow Control 1-1
	1.2 Interfaces 1-1

	2 Programs running under OPUS-NT 2-1
	2.1 External Programs 2-1
	2.1.1 The External Program Command 2-2
	2.1.2 The Select File/Program Page 2-3
	2.1.3 The Program Settings Page 2-5
	2.1.4 The DDE Command Page 2-6
	2.1.5 Writing software 2-7

	2.2 Macros 2-8
	2.3 VBScripts 2-8
	2.3.1 Accessing Scripts 2-8
	2.3.2 The Select Files/Script Page 2-9
	2.3.3 Generating a Script 2-10

	2.4 Including Macros and Scripts in the Tool Bar 2-11
	2.5 Auto-starting a Script 2-12

	3 Calling OPUS Functions 3-1
	4 Controlling External Programs 4-1
	5 OPUS-NT Macro Language 5-1
	5.1 Creating Macros 5-1
	5.2 General Syntax Rules 5-1
	5.3 Macro Keyword REM 5-2
	5.4 The Macro Editor 5-2
	5.4.1 General 5-2
	5.4.2 Special Commands 5-4
	5.4.3 The Variable Dialog Box 5-6
	5.4.4 Inserting OPUS Commands 5-7
	5.4.5 Editing OPUS Command Lines 5-8

	5.5 Debugging Macros 5-9
	5.5.1 Stepping Through a Macro 5-11
	5.5.2 Calling Sub Routines 5-11
	5.5.3 Placing Stop Marks 5-12
	5.5.4 Aborting a Macro 5-12
	5.5.5 Automatic Stop 5-13
	5.5.6 Error Messages 5-13

	5.6 Compiling Macros 5-13
	5.7 Macro Converter 5-13
	5.7.1 Variables 5-16
	5.7.1.1 Variable Conversion 5-16
	5.7.1.2 Combobox Variables 5-17
	5.7.1.3 Selecting Variables 5-17

	5.7.2 Differences in File Handling 5-17
	5.7.3 System Directories 5-18
	5.7.4 Function Parameters and Parameter Assignment 5-18
	5.7.5 Time-behavior of Macros 5-19
	5.7.6 Print Functions 5-19
	5.7.7 Calculations with Variables 5-19
	5.7.8 Jump Instructions 5-19
	5.7.9 Start Loop with For Each Option 5-20
	5.7.10 Load Multiple Files 5-20
	5.7.11 User Dialogs 5-20
	5.7.12 Client/Server Calls 5-20
	5.7.13 Conversion Functions 5-21

	5.8 Writing Portable Macros 5-21

	6 How to Write Macros 6-1
	6.1 General Remarks 6-1
	6.1.1 Syntax 6-1
	6.1.2 The Use of Variables 6-1
	6.1.3 Variable Names 6-2
	6.1.4 Variable Types 6-2
	6.1.5 Variable Type Conversion 6-3

	6.2 Measure 1 – A Simple Macro 6-3
	6.3 Measure 2 – A Macro Including Data Manipulation 6-6
	6.4 Measure 3 – Repeated Data Acquisition Using a Loop 6-8
	6.5 Measure 4 – Interacting with the User 6-11
	6.6 Measure 5 – Variable Loop Counters 6-13
	6.7 Load 1 – Loading and Processing a Spectrum 6-16
	6.8 Load 2 – Loading and Processing �Several Spectra 6-18
	6.9 Load 3 – Multiple File Processing 6-20
	6.10 Load 4 – Multiple File Processing 6-26
	6.11 Manipulation 1 – Processing of Files Already Loaded 6-29
	6.12 Manipulation 2 – Processing of Files Already Loaded 6-30
	6.13 Manipulation 2a – Saving Processed Files 6-31
	6.14 Manipulation 3 – Processing of Multiple Files Already Loaded 6-33
	6.15 Manipulation 4 – Multiple File Pro�cessing Using Variable Parameters 6-34
	6.16 Average 1 – Averaging Spectra 6-36
	6.17 Average 2 – Averaging Spectra In�cluding the Standard Deviation 6-39
	6.18 Parameter 1 – Reading Out Spectrum Parameters 6-41
	6.19 Parameter 2 – Generating Info Blocks 6-43
	6.20 Parameter 3 – Replacing Info Block Entries 6-46
	6.21 Parameter 4 – Read From a Report 6-47
	6.22 Control 1 – Controlling a Macro Using Buttons 6-50
	6.23 Control 1a – Controlling a Macro Using Buttons 6-53
	6.24 Control 2 – Controlling a Macro Using If, Else And Elseif 6-54
	6.25 Control 3 – Error Handling 6-60
	6.26 Timer 1 – Timer Function With Delay Time 6-61
	6.27 Timer 2 – Timer Function Using a Clock 6-64
	6.28 Timer 3 – Timer Function Using the If Statement 6-65
	6.29 Main 1 – Calling Sub Routines with �RunMacro 6-67
	6.30 Main 2 – Calling Sub Routines with �CallMacro 6-68
	6.31 Main 3 – Returning Values From a Sub Routine 6-71
	6.32 Output 1 – Directing Output to a File 6-75
	6.33 Output 2 – Plotting Spectra 6-77

	7 Writing External Programs 7-1
	7.1 A Basic Program with DDE Communication Capability 7-1
	7.1.1 Initializing the Connection 7-1
	7.1.2 Processing the Commands 7-2
	7.1.3 Notification and Result 7-3
	7.1.4 Error Handling 7-3
	7.1.5 Program Termination 7-4

	7.2 A C Program Using the Pipe Interface 7-4
	7.2.1 Establishing a Connection 7-5
	7.2.2 Client/Server Commands 7-5
	7.2.3 Data Manipulation 7-7
	7.2.4 Reading Data from the Pipe 7-8
	7.2.5 Changes compared to OPUS-OS/2 7-10
	7.2.6 Miscellaneous 7-10

	8 Creating Scripts 8-1
	8.1 VisualBasic Script 8-1
	8.1.1 Generating Forms and Buttons 8-1
	8.1.2 Objects and Events 8-2
	8.1.3 OPUS Functions 8-4
	8.1.4 Performing Measurements 8-4
	8.1.5 Accessing Spreadsheets 8-5
	8.1.6 Repeated Calls Using a Timer 8-6
	8.1.7 Accessing Spectral Data 8-7

	8.2 JavaScript 8-9

	9 Macro Command Reference 9-1
	9.1 VARIABLES Section 9-1
	9.1.1 Variable Types 9-2
	9.1.2 Variable Declaration for STRING, NUMERIC and BOOL 9-2
	9.1.3 Variable Declaration for FILE 9-3
	9.1.4 Variable Declaration for BUTTON 9-4
	9.1.5 Marking a Variable for Update 9-4
	9.1.6 Special Characters 9-5

	9.2 PROGRAM Section 9-6
	9.2.1 General Command Syntax 9-6
	9.2.2 Command Names 9-6
	9.2.3 Command Arguments 9-6

	9.3 PARAMETER Section 9-7
	9.4 Macro Functions Sorted Alphabetically 9-8
	9.5 Functions Sorted by Categories 9-10
	9.6 System Functions 9-12
	9.6.1 GetOpusPath 9-12
	9.6.2 GetUserPath 9-12
	9.6.3 GetMacroPath 9-13
	9.6.4 GetVersion 9-13
	9.6.5 GetArrayCount 9-13
	9.6.6 GetLength 9-14
	9.6.7 FindString 9-14
	9.6.8 CallMacro 9-15
	9.6.9 SaveVars 9-15

	9.7 Flow Control Functions 9-16
	9.7.1 StartLoop 9-16
	9.7.2 EndLoop 9-17
	9.7.3 Goto 9-17
	9.7.4 Label 9-17
	9.7.5 If ... Else ... Endif 9-18

	9.8 User Interface Functions 9-20
	9.8.1 Message 9-20
	9.8.2 StaticMessage 9-21
	9.8.3 UserDialog 9-21

	9.9 Input Functions 9-22
	9.9.1 Enter Expression 9-23
	9.9.2 GetParameter 9-24
	9.9.3 FromReportHeader 9-24
	9.9.4 FromReportMatrix 9-25
	9.9.5 ReadTextFile 9-25
	9.9.6 GetEnumList 9-25

	9.10 Output Functions 9-26
	9.10.1 TextToFile 9-26
	9.10.2 PrintToFile 9-27

	9.11 File Functions 9-27
	9.11.1 LoadFile 9-28
	9.11.2 ScanPath 9-29
	9.11.3 Copy 9-29
	9.11.4 Rename 9-30
	9.11.5 Delete 9-30

	9.12 Time Control Functions 9-30
	9.12.1 GetTime 9-30
	9.12.2 Timer 9-31

	9.13 Display Functions 9-31
	9.13.1 OpenDisplayWindow 9-32
	9.13.2 CloseDisplayWindow 9-32
	9.13.3 DisplaySpectrum 9-32
	9.13.4 UnDisplaySpectrum 9-33
	9.13.5 GetDisplayLimits 9-33
	9.13.6 SetDisplayLimits 9-33
	9.13.7 SetColor 9-33

	10 OPUS Command Reference 10-1
	10.1 Command Syntax of OPUS Functions 10-1
	10.2 Including OPUS Commands in Macros 10-1
	10.3 Measurement Commands 10-4
	10.4 Reference Section 10-5
	10.5 OPUS Functions Sorted Alphabetically 10-5
	10.6 OPUS Functions Sorted by Type 10-7
	10.7 OPUS Manipulation Functions 10-8
	10.7.1 ABTR 10-8
	10.7.2 Average 10-9
	10.7.3 Baseline 10-10
	10.7.4 BlackBody 10-10
	10.7.5 Convert 10-10
	10.7.6 Cut 10-11
	10.7.7 Deconvolution 10-11
	10.7.8 Derivative 10-12
	10.7.9 Extrapolation 10-12
	10.7.10 FFT 10-12
	10.7.11 FreqCalibration 10-14
	10.7.12 InverseFT 10-14
	10.7.13 KramersKronig 10-15
	10.7.14 MakeCompatible 10-15
	10.7.15 Merge 10-16
	10.7.16 Normalize 10-16
	10.7.17 PostFTZerofill 10-16
	10.7.18 RamanCorrection 10-17
	10.7.19 Smooth 10-17
	10.7.20 StraightLine 10-18
	10.7.21 Subtract 10-18

	10.8 OPUS Evaluation Functions 10-19
	10.8.1 Integrate 10-19
	10.8.2 PeakPick 10-19
	10.8.3 SignalToNoise 10-20

	10.9 OPUS File Functions 10-21
	10.9.1 ChangeDataBlockType 10-21
	10.9.2 CopyDataBlock 10-21
	10.9.3 DeleteDataBlock 10-21
	10.9.4 Restore 10-21
	10.9.5 Save, SaveAs 10-22
	10.9.6 SendFile 10-23
	10.9.7 Unload 10-23

	10.10 OPUS Measurement Functions 10-23
	10.10.1 Measurement Commands 10-23
	10.10.2 SendCommand 10-24
	10.10.3 SaveReference 10-24
	10.10.4 LoadReference 10-24

	10.11 OPUS Library Functions 10-25
	10.11.1 LibrarySearchInfo 10-25
	10.11.2 LibrarySearchPeak 10-25
	10.11.3 LibrarySearchStructure 10-27
	10.11.4 LibrarySearchSpectrum 10-27
	10.11.5 LibraryInitialize 10-29
	10.11.6 LibraryStore 10-29
	10.11.7 LibraryEdit 10-30
	10.11.8 InfoInput 10-31

	10.12 Miscellaneous OPUS Functions 10-33
	10.12.1 ExternalProgram 10-33
	10.12.2 ParameterEditor 10-34
	10.12.3 Plot 10-35
	10.12.4 VBScript 10-36

	11 OPUS Parameter Reference 11-1
	12 The C/S-Interpreter and its Commands 12-1
	12.1 Overview of Available Functions 12-1
	12.2 Commands and Command Syntax 12-1
	12.3 Old C/S Commands 12-2
	12.3.1 Overview 12-2
	12.3.2 CLOSE_PIPE 12-3
	12.3.3 COUNT_ENTRIES 12-3
	12.3.4 READ_FROM_ENTRY 12-4
	12.3.5 WRITE_TO_ENTRY 12-5
	12.3.6 READ_FROM_FILE 12-5
	12.3.7 WRITE_TO_FILE 12-6
	12.3.8 READ_FROM_BLOCK 12-7
	12.3.9 WRITE_TO_BLOCK 12-8
	12.3.10 ASCII 12-9
	12.3.11 BINARY 12-9
	12.3.12 DATA_VALUES 12-9
	12.3.13 DATA_POINTS 12-10
	12.3.14 READ_HEADER 12-10
	12.3.15 READ_DATA 12-12
	12.3.16 WRITE_HEADER 12-13
	12.3.17 WRITE_DATA 12-14
	12.3.18 COPY_DATA 12-16
	12.3.19 LOAD_FILE 12-17
	12.3.20 UNLOAD_FILE 12-17
	12.3.21 START_MACRO 12-18
	12.3.22 FILE_PARAMETERS 12-20
	12.3.23 OPUS_PARAMETERS 12-21
	12.3.24 READ_PARAMETER 12-21
	12.3.25 WRITE_PARAMETER 12-22
	12.3.26 RUN_MACRO 12-22
	12.3.27 MACRO_RESULTS 12-23
	12.3.28 KILL_MACRO 12-24

	12.4 Obsolete Commands 12-25
	12.4.1 OVERWRITE 12-25
	12.4.2 PRESERVE 12-25
	12.4.3 TIMEOUT 12-26

	12.5 New Commands 12-27
	12.5.1 BYTE_MODE 12-27
	12.5.2 INT_MODE 12-27
	12.5.3 FLOAT_MODE 12-28
	12.5.4 DOUBLE_MODE 12-28
	12.5.5 HEXSTRING_MODE 12-28
	12.5.6 FLOATCONV_MODE 12-29
	12.5.7 GET_DISPLAY 12-29
	12.5.8 SET_WINDOW 12-30
	12.5.9 NEW_WINDOW 12-30
	12.5.10 CLOSE_WINDOW 12-31
	12.5.11 POSITION_WINDOW 12-31
	12.5.12 GET_LANGUAGE 12-32
	12.5.13 GET_OPUSPATH 12-32
	12.5.14 GET_BASEPATH 12-33
	12.5.15 GET_DATAPATH 12-33
	12.5.16 GET_WORKPATH 12-33
	12.5.17 GET_USERNAME 12-34
	12.5.18 GET_BENCH 12-34
	12.5.19 UPDATE_BENCH 12-35
	12.5.20 COMMAND_SAY 12-35
	12.5.21 REPORT_INFO 12-36
	12.5.22 HEADER_INFO 12-36
	12.5.23 MATRIX_INFO 12-37
	12.5.24 MATRIX_ELEMENT 12-38
	12.5.25 HEADER_ELEMENT 12-39
	12.5.26 COMMAND_MODE 12-40
	12.5.27 EXECUTE_MODE 12-40
	12.5.28 REQUEST_MODE 12-41
	12.5.29 CLOSE_OPUS 12-41
	12.5.30 TAKE_REFERENCE 12-41
	12.5.31 MEASURE_SAMPLE 12-42
	12.5.32 COMMAND_LINE 12-43
	12.5.33 STOP_THREAD 12-43
	12.5.34 ACTIVATE_DIALOG 12-44
	12.5.35 LOAD_EXPERIMENT 12-44
	12.5.36 GET_USERRIGHTS 12-45
	12.5.37 PACKET_AVAILABLE 12-45
	12.5.38 GET_CLIENTAREA 12-46
	12.5.39 ACTIVATE_DISPLAY 12-46
	12.5.40 GET_LIMITS 12-47
	12.5.41 SET_LIMITS 12-47
	12.5.42 DISPLAY_BLOCK 12-48
	12.5.43 UNDISPLAY_BLOCK 12-49
	12.5.44 ENUM_STRINGS 12-49
	12.5.45 GET_VERSION 12-50
	12.5.46 ASK_THREAD 12-50
	12.5.47 FIND_FUNCTION 12-51
	12.5.48 WORKBOOK_MODE 12-52
	12.5.49 GET_SELECTED 12-52
	12.5.50 LIST_BLOCKS 12-53
	12.5.51 SHOW_TOOLBAR 12-53
	12.5.52 HIDE_TOOLBAR 12-54
	12.5.53 QUICK_PRINT 12-55

	13 Script Commands 13-1
	13.1 The C/S Interpreter 13-1
	13.2 VBScript Language 13-1
	13.2.1 VBScript Data Types 13-1
	13.2.2 VBScript Variables 13-2
	13.2.3 VBScript Constants 13-5
	13.2.4 VBScript Operators 13-5
	13.2.5 Using Conditional Statements to Control Program Execution 13-6
	13.2.6 Loops 13-9
	13.2.6.1 Using While...Wend 13-11

	13.2.7 VBScript Procedures 13-12
	13.2.8 VBScript Coding Converntions 13-14
	13.2.9 VBScript Functions 13-18
	13.2.10 File and System Handling 13-21

	13.3 JavaScript 13-23
	13.4 Functions/Events of Forms 13-24
	13.5 Microsoft Forms 13-27
	13.5.1 Checkbox 13-28
	13.5.2 Combobox Control 13-28
	13.5.3 CommandButton 13-28
	13.5.4 Frame Control 13-28
	13.5.5 Image Control 13-29
	13.5.6 Label Control 13-29
	13.5.7 ListBox Control 13-29
	13.5.8 Multipage Control 13-29
	13.5.9 OptionButton Control 13-30
	13.5.10 ScrollBar Control 13-30
	13.5.11 SpinButton Control 13-30
	13.5.12 TabStrip Control 13-31
	13.5.13 TextBox Control 13-31
	13.5.14 ToggleButton Control 13-31
	13.5.15 Timer Control 13-32
	13.5.16 Debugging Scripts 13-32

	1 Programming, Controlling and Communication with OPUS-NT
	1.1 Methods of Flow Control
	1.2 Interfaces

	2 Programs running under OPUS-NT
	2.1 External Programs
	2.1.1 The External Program Command
	2.1.2 The Select File/Program Page
	2.1.3 The Program Settings Page
	2.1.4 The DDE Command Page
	2.1.5 Writing software

	2.2 Macros
	2.3 VBScripts
	2.3.1 Accessing Scripts
	2.3.2 The Select Files/Script Page
	2.3.3 Generating a Script

	2.4 Including Macros and Scripts in the Tool Bar
	2.5 Auto-starting a Script

	3 Calling OPUS Functions
	4 Controlling External Programs
	5 OPUS-NT Macro Language
	5.1 Creating Macros
	5.2 General Syntax Rules
	5.3 Macro Keyword REM
	5.4 The Macro Editor
	5.4.1 General
	5.4.2 Special Commands
	5.4.3 The Variable Dialog Box
	5.4.4 Inserting OPUS Commands
	5.4.5 Editing OPUS Command Lines

	5.5 Debugging Macros
	5.5.1 Stepping Through a Macro
	5.5.2 Calling Sub Routines
	5.5.3 Placing Stop Marks
	5.5.4 Aborting a Macro
	5.5.5 Automatic Stop
	5.5.6 Error Messages

	5.6 Compiling Macros
	5.7 Macro Converter
	5.7.1 Variables
	5.7.1.1 Variable Conversion
	5.7.1.2 Combobox Variables
	5.7.1.3 Selecting Variables

	5.7.2 Differences in File Handling
	5.7.3 System Directories
	5.7.4 Function Parameters and Parameter Assignment
	5.7.5 Time-behavior of Macros
	5.7.6 Print Functions
	5.7.7 Calculations with Variables
	5.7.8 Jump Instructions
	5.7.9 Start Loop with For Each Option
	5.7.10 Load Multiple Files
	5.7.11 User Dialogs
	5.7.12 Client/Server Calls
	5.7.13 Conversion Functions

	5.8 Writing Portable Macros

	6 How to Write Macros
	6.1 General Remarks
	6.1.1 Syntax
	6.1.2 The Use of Variables
	6.1.3 Variable Names
	6.1.4 Variable Types
	6.1.5 Variable Type Conversion

	6.2 Measure 1 – A Simple Macro
	6.3 Measure 2 – A Macro Including Data Manipulation
	6.4 Measure 3 – Repeated Data Acquisition Using a Loop
	6.5 Measure 4 – Interacting with the User
	6.6 Measure 5 – Variable Loop Counters
	6.7 Load 1 – Loading and Processing a Spectrum
	6.8 Load 2 – Loading and Processing �Several Spectra
	6.9 Load 3 – Multiple File Processing
	6.10 Load 4 – Multiple File Processing
	6.11 Manipulation 1 – Processing of Files Already Loaded
	6.12 Manipulation 2 – Processing of Files Already Loaded
	6.13 Manipulation 2a – Saving Processed Files
	6.14 Manipulation 3 – Processing of Multiple Files Already Loaded
	6.15 Manipulation 4 – Multiple File Pro�cessing Using Variable Parameters
	6.16 Average 1 – Averaging Spectra
	6.17 Average 2 – Averaging Spectra In�cluding the Standard Deviation
	6.18 Parameter 1 – Reading Out Spectrum Parameters
	6.19 Parameter 2 – Generating Info Blocks
	6.20 Parameter 3 – Replacing Info Block Entries
	6.21 Parameter 4 – Read From a Report
	6.22 Control 1 – Controlling a Macro Using Buttons
	6.23 Control 1a – Controlling a Macro Using Buttons
	6.24 Control 2 – Controlling a Macro Using If, Else And Elseif
	6.25 Control 3 – Error Handling
	6.26 Timer 1 – Timer Function With Delay Time
	6.27 Timer 2 – Timer Function Using a Clock
	6.28 Timer 3 – Timer Function Using the If Statement
	6.29 Main 1 – Calling Sub Routines with �RunMacro
	6.30 Main 2 – Calling Sub Routines with �CallMacro
	6.31 Main 3 – Returning Values From a Sub Routine
	6.32 Output 1 – Directing Output to a File
	6.33 Output 2 – Plotting Spectra

	7 Writing External Programs
	7.1 A Basic Program with DDE Communication Capability
	7.1.1 Initializing the Connection
	7.1.2 Processing the Commands
	7.1.3 Notification and Result
	7.1.4 Error Handling
	7.1.5 Program Termination

	7.2 A C Program Using the Pipe Interface
	7.2.6 Establishing a Connection
	7.2.7 Client/Server Commands
	7.2.8 Data Manipulation
	7.2.9 Reading Data from the Pipe
	7.2.10 Changes compared to OPUS-OS/2
	7.2.11 Miscellaneous

	8 Creating Scripts
	8.1 VisualBasic Script
	8.1.1 Generating Forms and Buttons
	8.1.2 Objects and Events
	8.1.3 OPUS Functions
	8.1.4 Performing Measurements
	8.1.5 Accessing Spreadsheets
	8.1.6 Repeated Calls Using a Timer
	8.1.7 Accessing Spectral Data

	8.2 JavaScript

	9 Macro Command Reference
	9.1 VARIABLES Section
	9.1.1 Variable Types
	9.1.2 Variable Declaration for STRING, NUMERIC and BOOL
	9.1.3 Variable Declaration for FILE
	9.1.4 Variable Declaration for BUTTON
	9.1.5 Marking a Variable for Update
	9.1.6 Special Characters

	9.2 PROGRAM Section
	9.2.1 General Command Syntax
	9.2.2 Command Names
	9.2.3 Command Arguments

	9.3 PARAMETER Section
	9.4 Macro Functions Sorted Alphabetically
	9.5 Functions Sorted by Categories
	9.6 System Functions
	9.6.1 GetOpusPath
	9.6.2 GetUserPath
	9.6.3 GetMacroPath
	9.6.4 GetVersion
	9.6.5 GetArrayCount
	9.6.6 GetLength
	9.6.7 FindString
	9.6.8 CallMacro
	9.6.9 SaveVars

	9.7 Flow Control Functions
	9.7.1 StartLoop
	9.7.2 EndLoop
	9.7.3 Goto
	9.7.4 Label
	9.7.5 If ... Else ... Endif

	9.8 User Interface Functions
	9.8.1 Message
	9.8.2 StaticMessage
	9.8.3 UserDialog

	9.9 Input Functions
	9.9.1 Enter Expression
	9.9.2 GetParameter
	9.9.3 FromReportHeader
	9.9.4 FromReportMatrix
	9.9.5 ReadTextFile
	9.9.6 GetEnumList

	9.10 Output Functions
	9.10.1 TextToFile
	9.10.2 PrintToFile

	9.11 File Functions
	9.11.1 LoadFile
	9.11.2 ScanPath
	9.11.3 Copy
	9.11.4 Rename
	9.11.5 Delete

	9.12 Time Control Functions
	9.12.1 GetTime
	9.12.2 Timer

	9.13 Display Functions
	9.13.1 OpenDisplayWindow
	9.13.2 CloseDisplayWindow
	9.13.3 DisplaySpectrum
	9.13.4 UnDisplaySpectrum
	9.13.5 GetDisplayLimits
	9.13.6 SetDisplayLimits
	9.13.7 SetColor

	10 OPUS Command Reference
	10.1 Command Syntax of OPUS Functions
	10.2 Including OPUS Commands in Macros
	10.3 Measurement Commands
	10.4 Reference Section
	10.5 OPUS Functions Sorted Alphabetically
	10.6 OPUS Functions Sorted by Type
	10.7 OPUS Manipulation Functions
	10.7.1 ABTR
	10.7.2 Average
	10.7.3 Baseline
	10.7.4 BlackBody
	10.7.5 Convert
	10.7.6 Cut
	10.7.7 Deconvolution
	10.7.8 Derivative
	10.7.9 Extrapolation
	10.7.10 FFT
	10.7.11 FreqCalibration
	10.7.12 InverseFT
	10.7.13 KramersKronig
	10.7.14 MakeCompatible
	10.7.15 Merge
	10.7.16 Normalize
	10.7.17 PostFTZerofill
	10.7.18 RamanCorrection
	10.7.19 Smooth
	10.7.20 StraightLine
	10.7.21 Subtract

	10.8 OPUS Evaluation Functions
	10.8.1 Integrate
	10.8.2 PeakPick
	10.8.3 SignalToNoise

	10.9 OPUS File Functions
	10.9.1 ChangeDataBlockType
	10.9.2 CopyDataBlock
	10.9.3 DeleteDataBlock
	10.9.4 Restore
	10.9.5 Save, SaveAs
	10.9.6 SendFile
	10.9.7 Unload

	10.10 OPUS Measurement Functions
	10.10.1 Measurement Commands
	10.10.2 SendCommand
	10.10.3 SaveReference
	10.10.4 LoadReference

	10.11 OPUS Library Functions
	10.11.1 LibrarySearchInfo
	10.11.2 LibrarySearchPeak
	10.11.3 LibrarySearchStructure
	10.11.4 LibrarySearchSpectrum
	10.11.5 LibraryInitialize
	10.11.6 LibraryStore
	10.11.7 LibraryEdit
	10.11.8 InfoInput

	10.12 Miscellaneous OPUS Functions
	10.12.1 ExternalProgram
	10.12.2 ParameterEditor
	10.12.3 Plot
	10.12.4 VBScript

	11 OPUS Parameter Reference
	12 The C/S-Interpreter and its Commands
	12.1 Overview of Available Functions
	12.2 Commands and Command Syntax
	12.3 Old C/S Commands
	12.3.1 Overview
	12.3.2 CLOSE_PIPE
	12.3.3 COUNT_ENTRIES
	12.3.4 READ_FROM_ENTRY
	12.3.5 WRITE_TO_ENTRY
	12.3.6 READ_FROM_FILE
	12.3.7 WRITE_TO_FILE
	12.3.8 READ_FROM_BLOCK
	12.3.9 WRITE_TO_BLOCK
	12.3.10 ASCII
	12.3.11 BINARY
	12.3.12 DATA_VALUES
	12.3.13 DATA_POINTS
	12.3.14 READ_HEADER
	12.3.15 READ_DATA
	12.3.16 WRITE_HEADER
	12.3.17 WRITE_DATA
	12.3.18 COPY_DATA
	12.3.19 LOAD_FILE
	12.3.20 UNLOAD_FILE
	12.3.21 START_MACRO
	12.3.22 FILE_PARAMETERS
	12.3.23 OPUS_PARAMETERS
	12.3.24 READ_PARAMETER
	12.3.25 WRITE_PARAMETER
	12.3.26 RUN_MACRO
	12.3.27 MACRO_RESULTS
	12.3.28 KILL_MACRO

	12.4 Obsolete Commands
	12.4.1 OVERWRITE
	12.4.2 PRESERVE
	12.4.3 TIMEOUT

	12.5 New Commands
	12.5.1 BYTE_MODE
	12.5.2 INT_MODE
	12.5.3 FLOAT_MODE
	12.5.4 DOUBLE_MODE
	12.5.5 HEXSTRING_MODE
	12.5.6 FLOATCONV_MODE
	12.5.7 GET_DISPLAY
	12.5.8 SET_WINDOW
	12.5.9 NEW_WINDOW
	12.5.10 CLOSE_WINDOW
	12.5.11 POSITION_WINDOW
	12.5.12 GET_LANGUAGE
	12.5.13 GET_OPUSPATH
	12.5.14 GET_BASEPATH
	12.5.15 GET_DATAPATH
	12.5.16 GET_WORKPATH
	12.5.17 GET_USERNAME
	12.5.18 GET_BENCH
	12.5.19 UPDATE_BENCH
	12.5.20 COMMAND_SAY
	12.5.21 REPORT_INFO
	12.5.22 HEADER_INFO
	12.5.23 MATRIX_INFO
	12.5.24 MATRIX_ELEMENT
	12.5.25 HEADER_ELEMENT
	12.5.26 COMMAND_MODE
	12.5.27 EXECUTE_MODE
	12.5.28 REQUEST_MODE
	12.5.29 CLOSE_OPUS
	12.5.30 TAKE_REFERENCE
	12.5.31 MEASURE_SAMPLE
	12.5.32 COMMAND_LINE
	12.5.33 STOP_THREAD
	12.5.34 ACTIVATE_DIALOG
	12.5.35 LOAD_EXPERIMENT
	12.5.36 GET_USERRIGHTS
	12.5.37 PACKET_AVAILABLE
	12.5.38 GET_CLIENTAREA
	12.5.39 ACTIVATE_DISPLAY
	12.5.40 GET_LIMITS
	12.5.41 SET_LIMITS
	12.5.42 DISPLAY_BLOCK
	12.5.43 UNDISPLAY_BLOCK
	12.5.44 ENUM_STRINGS
	12.5.45 GET_VERSION
	12.5.46 ASK_THREAD
	12.5.47 FIND_FUNCTION
	12.5.48 WORKBOOK_MODE
	12.5.49 GET_SELECTED
	12.5.50 LIST_BLOCKS
	12.5.51 SHOW_TOOLBAR
	12.5.52 HIDE_TOOLBAR
	12.5.53 QUICK_PRINT

	13 Script Commands
	13.1 The C/S Interpreter
	13.2 VBScript Language
	13.2.1 VBScript Data Types
	13.2.2 VBScript Variables
	13.2.3 VBScript Constants
	13.2.4 VBScript Operators
	13.2.5 Using Conditional Statements to Control Program Execution
	13.2.6 Loops
	13.2.6.1 Using While...Wend

	13.2.7 VBScript Procedures
	13.2.8 VBScript Coding Converntions
	13.2.9 VBScript Functions
	13.2.10 File and System Handling

	13.3 JavaScript
	13.4 Functions/Events of Forms
	13.5 Microsoft Forms
	13.5.1 Checkbox
	13.5.2 Combobox Control
	13.5.3 CommandButton
	13.5.4 Frame Control
	13.5.5 Image Control
	13.5.6 Label Control
	13.5.7 ListBox Control
	13.5.8 Multipage Control
	13.5.9 OptionButton Control
	13.5.10 ScrollBar Control
	13.5.11 SpinButton Control
	13.5.12 TabStrip Control
	13.5.13 TextBox Control
	13.5.14 ToggleButton Control
	13.5.15 Timer Control
	13.5.16 Debugging Scripts

