| 24313

Spectroscopic Software

Version 4

PROGRAMMING

© 2002 BRUKER OPTIK GmbH

Thetext, figures, and programs have been worked out with the utmost care. However, we cannot accept
either legal responsibility or any liability for any incorrect statements which may remain, nor their con-
sequences. The following publication is protected by copyright. All rights reserved. No part of this pub-
lication may be reproduced in any form by photocopy, microfilm or other procedures or transmitted in
ausable language for machines, in particular data processing systems without our written authorization.
The rights of reproduction through lectures, radio and television are aso reserved. The software and
hardware descriptions referred to in this manual are in many cases registered trademarks and as such
are subject to legal requirements.

This manual isthe original documentation for the OPUS spectroscopic software.

Table of Contents
I ntr oduction

1 Programming, Controlling and Communication with OPUS-NT . .1-1

11 Methodsof Flow Control 1-1

12 INterfaCeS . . . o 1-1

2 Programsrunningunder OPUSNT 2-1

2.1 External Programs 2-1

211 TheExternal ProgramCommand 2-2

212 TheSelectFile/ProgramPage 2-3

213 TheProgram SettingsPageoiiiiin... 2-5

214 TheDDECommandPagecciiiiiinan.... 2-6

215 Writingsoftware 2-7

2.2 M aCIOS . . 2-8

2.3 VBSOS .« 2-8

231 ACCESSING SCriPLS .\ v vv e 2-8

232 TheSelectFiles/ScriptPage 2-9

233 GeneratingasSCriptoo i 2-10

2.4 Including Macros and ScriptsintheTool Bar. 2-11

25 AUto-Starting aSCriptot 2-12

3 CallingOPUSFuUNCtions ... 3-1

4 Controlling External Programs, 4-1
Macros

5 OPUSNT MacroLanguagec.uiuiiiinnnnnnennnn. 5-1

51 Creating MaCroSoo it 51

5.2 General Syntax RUIES i 51

5.3 MacroKeyword REM 5-2

54 TheMacro Editor e 5-2

541 General ... 5-2

542 Speciad Commandsiiiiiii 5-4

543 TheVariableDialogBoX 5-6

544 InsertingOPUSCommands, 5-7

545 EditingOPUSCommandLinescovn.. 5-8

55 Debugging Macros . ..ot 5-9

55.1 Stepping ThroughaMacro, 5-11

552 CdlingSubRoutines i 5-11

553 PacingStopMarks. ... 5-12

554 AbortingaMacro 5-12

555 AutOmMaticStop 5-13

556 EMOrMESSagesot 5-13

5.6 Compiling MaCrost 5-13
5.7 MaCro CONVEITEr e 5-13
571 Variables.o 5-16

5.7.1.1 VaridbleConversionc..civiiuiin... 5-16

5.7.1.2 Combobox Variables 5-17

5.7.1.3 SelectingVariables 5-17

5.7.2 DifferencesinFileHandling 5-17

573 SystemDirectories 5-18

5.74 Function Parameters and Parameter Assignment 5-18

575 Timebehaviorof Macroscoviiiiiinn.. 5-19

576 PrintFunctions 5-19

5.7.7 CalculationswithVariables 5-19

578 JumplInstructionsciiii 5-19

579 StartLoopwithFor EachOption 5-20

5710 LoadMultipleFiles i 5-20

5711 UserDialogs .. .ovovi e 5-20

5712 Client/Server Calls 5-20

5713 ConversonFunctionscoiiiiiiiinan... 5-21

5.8 Writing Portable Macros. 5-21
HowtoWriteMacros i, 6-1
6.1 General Remarks 6-1
B6.1.1 SYNaX . ..ot 6-1

6.1.2 TheUseof Variables 6-1

6.1.3 VariableNames i 6-2

6.14 VaiableTypeso 6-2

6.1.5 VariableTypeConversionc.couuiiiiinnan.n.. 6-3

6.2 Measure1—A SIMpleMaCro ...t 6-3
6.3 Measure 2 — A Macro Including DataManipulation 6-6
6.4 Measure 3 — Repeated Data Acquisition UsingalLoop 6-8
6.5 Measure 4 — Interacting withtheUser 6-11
6.6 Measure5—VariableLoopCounters, 6-13
6.7 Load 1 —Loading and Processinga Spectrum 6-16
6.8 Load 2 — Loading and Processing Several Spectra. 6-18
6.9 Load 3—MultipleFileProcessing, 6-20
6.10 Load4—MultipleFileProcessingccoiiiiiii... 6-26
6.11 Manipulation 1 —Processing of FilesAlready Loaded 6-29
6.12 Manipulation 2 — Processing of FilesAlready Loaded 6-30
6.13 Manipulation 2a— Saving Processed Files 6-31
6.14 Manipulation 3 —Processing of Multiple Files Already Loaded. 6-33
6.15 Manipulation 4 — Multiple File Processing Using Variable Parameters. . 6-34
6.16 Averagel—Averaging Spectrat 6-36
6.17 Average 2 — Averaging Spectra Including the Standard Deviation 6-39
6.18 Parameter 1 — Reading Out Spectrum Parameters. 6-41
6.19 Parameter 2—-Generating InfoBlocks 6-43
6.20 Parameter 3—Replacing Info Block Entries 6-46
6.21 Parameter4—Read FromaReport............., 6-47

6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33

Control 1 —Controlling aMacro Using Buttons 6-50

Control 1a— ControllingaMacroUsingButtons 6-53
Control 2 — Controlling aMacro Using If, Elses And Elseif 6-54
Control 3—ErrorHandling i 6-60
Timer 1 —Timer Function WithDelay Time 6-61
Timer 2—Timer FunctionUsingaClock 6-64
Timer 3—Timer Function Using theIf Statement 6-65
Main 1 —Calling Sub RoutineswithRunMacro 6-67
Main 2 — Calling Sub RoutineswithCallMacro 6-68
Main 3 — Returning ValuesFromaSub Routine 6-71
Output 1 —Directing OutputtoaFile 6-75
Output 2—Plotting Spectra.ot e 6-77

External Programs

7 Writing External Programs., 7-1
7.1 A Basic Program with DDE Communication Capability 7-1
7.1.1 InitidizingtheConnection 7-1

7.1.2 ProcessingtheCommands 7-2

7.1.3 NotificationandResult 7-3

714 ErrorHandling 7-3

7.15 ProgramTerminationciiiiiiiniinnanan. 7-4

7.2 A CProgram Using the Pipelnterface 7-4
7.21 EdablishingaConnection, 7-5

722 Client/Server Commands i, 7-5

723 DaaManipulation 7-7

7.24 Reading DatafromthePipe 7-8

7.25 ChangescomparedtoOPUS-OS/2 7-10

726 Miscalaneous 7-10

8 Creating SCriptS ..ot e 8-1
8.1 VisualBasiC SCript 8-1
811 Generating FormsandButtons, 8-1

812 ObjectsandEvents ...t 8-2

813 OPUSFUNCLIONSttt e 8-4

8.14 PeformingMeasurementsiiiiiinan.... 8-4

815 AccessingSpreadsheets 8-5

8.1.6 RepeatedCallsUsingaTimer.................ccovuun.... 8-6

817 AccessingSpectralDataoiiiiiii 8-7

8.2 JAV APt o 8-9

M acro Command Reference

9 Macro Command Reference 9-1

9.1

VARIABLES SeCtionot 9-1

9.2

9.3
9.4
9.5
9.6

9.7

9.8

9.9

9.10

911

911 VaiableTypes 9-2

9.1.2 Variable Declaration for STRING, NUMERIC and BOOL 9-2
9.1.3 VaiableDeclarationfor FILE 9-3
9.14 VariableDeclarationfor BUTTON 9-4
9.15 MarkingaVariableforUpdate........................... 9-4
9.1.6 Specia Charactersciiiiiiiiiiinan.. 9-5
PROGRAM SeCtion e e 9-6
921 Genegrad Command SyntaXc.coeiiiiiinan... 9-6
022 CommandNamest 9-6
923 Command ArgumentS.t 9-6
PARAMETER SECHiON . ..ot e 9-7
Macro Functions Sorted Alphabetically 9-8
Functions Sorted by Categories, 9-10
System Functions 9-12
9.6.1 GetOpusPathot 9-12
9.6.2 GetUsarPath i 9-12
9.6.3 GetMacroPath 9-13
0.6.4 GEVEISION ...ttt 9-13
9.6.5 GetArrayCountt e 9-13
96.6 GetLength 9-14
9.6.7 FNASIING ... oot e 9-14
968 CalMaCroot 9-15
0.6.9 SaVEVAIS 9-15
Flow Control FUNctionsc i 9-16
071 SatLOOD ..ot 9-16
972 ENALOOPiviii 9-17
0.7.3 GO0 ..ttt 9-17
074 Label 9-17
975 If.. Else... Endif 9-18
User Interface FUNCLIONSo e 9-20
0.8 1 MESSA0E ..ottt 9-20
082 SACMESSAGE . ..o it 9-21
983 UsaDialogcoviii 9-21
INPUE FUNCLIONSo e e 9-22
991 ENter EXPressionoviriiiiii it 9-23
9.9.2 GetParameter 9-24
99.3 FromReportHeader i 9-24
994 FromReportMatriXouiiiiii i 9-25
995 ReadTextFile i 9-25
996 GeEENUMLISE.o 9-25
OULtPUL FUNCLIONSo e 9-26
9.10.1 TextToFile i 9-26
9.10.2 PrintToFile 9-27
FileFUNCtions i e 9-27
0111 LoadFileo 9-28
0.11.2 ScanPath 9-29
0.10.3 COPY « ettt 9-29
0114 RENAME . ..ottt 9-30
0115 DEEte ... 9-30

Vi

9.12

9.13

TimeControl FUNCLIONSo e 9-30

0121 GETIME ..ttt e 9-30
0.12.2 TiMEr 9-31
Display FUNCLIONSo 9-31
9.13.1 OpenDisplayWindowcciiiiiiiinnnnn... 9-32
9.13.2 CloseDisplayWindow, 9-32
9.13.3 DisplaySpectrum 9-32
9.13.4 UnDisplaySpectrumt 9-33
9.135 GetDisplayLimits ...t 9-33
9.13.6 SetDisplayLimitsco i 9-33
0.13.7 SeCOlOr ..o 9-33

OPUS Command Reference

10

OPUSCommand Reference ..., 10-1
10.1 Command Syntax of OPUSFunctions 10-1
10.2 Including OPUS CommandsinMacrosccovuuuenn... 10-1
10.3 Measurement Commands . ..ot 10-4
104 Reference Section 10-5
10.5 OPUSFunctions Sorted Alphabetically 10-5
10.6 OPUSFunctionsSortedby Type ... 10-7
10.7 OPUSManipulation Functions 10-8
10.7.1 ABTR .o 10-8
10.7.2 AVEIAOE . . oot 10-9
10.7.3 Basaline ... 10-10
10.7.4 BlackBodycc.iii 10-10
10.7.5 COoNVErt ... 10-10
1076 CUL oot 10-11
10.7.7 Deconvolutioncciiiiiii 10-11
10.7.8 DerivatiVe 10-12
10.7.9 Extrapolationcc i 10-12
10.7.00 FRT o 10-12
10.7.11 FreqCalibration 10-14
10.7.02 INVErseRrT oo 10-14
10.7.13 KramersKronig oo v e et 10-15
10.7.14 MakeCompatible i 10-15
10715 MEIQE .ottt 10-16
10.7.16 Normalizet e 10-16
10.7.17 PostFTZerofillo 10-16
10.7.18 RamanCorrection.ouu e 10-17
10.7.19 SMOOth. . ..o 10-17
10.7.20 StraightLine.t 10-18
10.7.21 Subtract 10-18
10.8 OPUSEvauationFunctionst 10-19
10.8.1 INntegrate.o 10-19
1082 PeakPick ... 10-19
10.8.3 SIgNATONOISE. . ..o vt 10-20

vii

11

10.9 OPUSHIleFuNnctions, 10-21
10.9.1 ChangeDataBlockType., 10-21
10.9.2 CopyDataBlockccoiiii i 10-21
10.9.3 DeéeeDataBlock i 10-21
1094 ReESOME. ...ttt 10-21
1095 Save SaVEAS. . ..ot 10-22
1096 SendFile. 10-23
109.7 Unload.o 10-23
10.10 OPUSMeasurement FUNCLIONS 10-23
10.10.1 Measurement Commandst 10-23
10.10.2 SendCommandot 10-24
10.10.3 SaveReference i 10-24
10.10.4 LoadReferencecooiiiii i 10-24
10.11 OPUSLibrary FUNCLIONSo e 10-25
10.11.1 LibrarySearchinfo.......... ... i 10-25
10.11.2 LibrarySearchPeako iiiiiiiiiinn 10-25
10.11.3 LibrarySearchStructure 10-27
10.11.4 LibrarySearchSpectrum 10-27
10.11.5 Librarylnitidize i 10-29
10.11.6 LibraryStore 10-29
10.11.7 LibraryEdit 10-30
10218 Infolnputo 10-31
10.12 MiscellaneousOPUSFuNctions, 10-33
10.12.1 ExternalProgram 10-33
10.12.2 ParameterEditor 10-34
10.12.3 PAOt .ot 10-35
10124 VBSCIiPt . oo vttt 10-36
OPUS Parameter Reference., 11-1

Client/Server Command Reference

12

The C/S-Interpreter anditsCommands. 12-1
12.1 Overview of AvailableFunctions 12-1
122 Commandsand Command Syntax.couuiriinennnen.n.. 12-1
12.3 OldC/ISCommandsciii i e e 12-2
1231 OVEIVIEW oo e 12-2
1232 CLOSE PIPE e 12-3
12.3.3 COUNT ENTRIES. e 12-3
1234 READ _FROM ENTRY 12-4
1235 WRITE TO ENTRY e 12-5
1236 READ FROM FILE i 12-5
1237 WRITE TO FILE 12-6
12.3.8 READ_FROM BLOCK\t 12-7
12.39 WRITE_ TO BLOCK ...\ttt 12-8
12.3.10 ASCIl et 12-9
12.3.11 BINARY ... 12-9

viii

124

125

12312 DATA VALUES e 12-9
12313 DATA POINTS ... e 12-10
12314 READ HEADER i 12-10
12315 READ DATA . . 12-12
12.3.16 WRITE HEADER 12-13
12317 WRITE DATA ... e e e 12-14
12.3.18 COPY DATA . e e 12-16
12319 LOAD FILE 12-17
12320 UNLOAD FILE e 12-17
12321 START MACRO ... e 12-18
12322 FILE PARAMETERS 12-20
12.3.23 OPUS PARAMETERS i 12-21
12324 READ PARAMETER 12-21
12325 WRITE PARAMETER 12-22
12326 RUN_MACROo e 12-22
12327 MACRO RESULTS i 12-23
12328 KILL MACRO e 12-24
Obsolete Commandsot 12-25
1241 OVERWRITE 12-25
1242 PRESERVE i 12-25
1243 TIMEOUT ... e 12-26
New Commandscti i e 12-27
1251 BYTE MODE i 12-27
1252 INT _MODE e 12-27
1253 FLOAT MODE e 12-28
1254 DOUBLE MODE 12-28
1255 HEXSTRING MODE 12-28
1256 FLOATCONV_MODE ..., 12-29
1257 GET_DISPLAY ... e e 12-29
1258 SET WINDOW e 12-30
1259 NEW WINDOW e 12-30
12510 CLOSE WINDOW 12-31
125.11 POSITION WINDOW i 12-31
12512 GET_LANGUAGE ... 12-32
12513 GET_OPUSPATH e 12-32
12514 GET BASEPATH. 12-33
12515 GET_DATAPATH e 12-33
12516 GET_WORKPATH. e 12-33
12517 GET_USERNAME. i 12-34
12518 GET_ BENCH e 12-34
12519 UPDATE BENCH e 12-35
12520 COMMAND _SAY ... e e 12-35
12521 REPORT INFO e 12-36
12522 HEADER INFO e 12-36
12523 MATRIX INFO e 12-37
12524 MATRIX_ELEMENT. 12-38
12525 HEADER ELEMENT i 12-39
12526 COMMAND MODE 12-40
12527 EXECUTE MODE. 12-40
12528 REQUEST MODEt 12-41

12529 CLOSE OPUS e e 12-41

12530 TAKE REFERENCEt 12-41

12531 MEASURE_SAMPLE 12-42

12532 COMMAND _LINE. e 12-43

12533 STOP_THREADt 12-43

12534 ACTIVATE DIALOGt 12-44

12535 LOAD_EXPERIMENT. 12-44

12536 GET_USERRIGHTS 12-45

12537 PACKET_AVAILABLE. i 12-45

12538 GET_CLIENTAREA e 12-46

12539 ACTIVATE DISPLAY ... e 12-46

12540 GET _LIMITS ..o 12-47

12541 SET LIMITS ..o e 12-47

12542 DISPLAY BLOCKt 12-48

12543 UNDISPLAY _BLOCK. ... s 12-49

12544 ENUM_STRINGS. e 12-49

12545 GET_VERSIONo 12-50

12546 ASK_THREAD ...t e 12-50

12547 FIND_FUNCTIONot e 12-51

12548 WORKBOOK _MODEttt 12-52

12549 GET_SELECTEDot 12-52

12550 LIST BLOCKS. ...t 12-53

12551 SHOW _TOOLBAR 12-53

12552 HIDE_TOOLBAR. 12-54

12553 QUICK PRINTt e 12-55
Scripts

13 Script Commands.ooii i 13-1

131 TheC/SInterpreter e 13-1

132 VBSCriptLanguageooini 13-1

1321 VBSCript DataTypesS . ..o i e e e e 13-1

13.22 VBScriptVariables. ... 13-2

13.23 VBScriptConstantS ...t 13-5

13.2.4 VBSCript Operators. ... oot et 13-5

13.25 Using Conditional Statementsto Control Program Execution . . 13-6

1326 LOOPS. . . oot e et e 13-9

13.26.1UsngWhile.Wend 13-11

13.2.7 VBScript Procedures.oii i 13-12

13.2.8 VBScript Coding Converntions.covuan.... 13-14

13.29 VBScript Functions ...t 13-18

13.2.10 Fileand SystemHandling 13-21

133 JAVASCIIPt ..ot 13-23

134 FunctiondEventsof FOrms 13-24

135 Microsoft FOrmso 13-27

1351 Checkboxo 13-28

13.5.2 Combobox Control i 13-28

1353 CommandBUttoNvuiiii i 13-28

1354 FrameControl 13-28

1355 ImageControl i 13-29
1356 Labe Control 13-29
135.7 ListBox Controlt 13-29
13.5.8 MultipageControlt 13-29
1359 OptionButtonControl, 13-30
13.5.10 ScrollBar Control 13-30
13.5.11 SpinButtonControl i 13-30
13.5.12 TabStripControl 13-31
13513 TextBox Controlt 13-31
13.5.14 ToggleButtonControl 13-31
13.5.15 Timer Controlouuii e 13-32
13.5.16 Debugging SCriptsot 13-32

Xi

Methods of Flow Control

Programming, Controlling

and Communication with
OPUS-NT

Data acquisition and processing under OPUS-NT can be automated using self-
written programs. These programs can either be written in OPUS own macro
programming language, or in Microsofts VBScript. OPUS-NT provides an
interface to third party programs, giving you alink to software designed for pur-
poses other than spectral data acquisition and manipulation. In addition, you
can use thisinterface to access programs you have written yourself.

The first part of this manual covers the interfaces for external programs. The
second part references the OPUS functions, macro commands, client/server and
VB Script commands.

1.1 Methods of Flow Control

OPUS provides several waysto control program routines. These range from the
simple recording of routine commands in a macro to sophisticated evalutaion
algorithms, which need OPUS parameters and specral data. And, for example,
third party software to control accessories.

Thisis established by the use of:

e Macros
e VBScript
» externa programs

1.2 Interfaces

OPUS comprises of several interfaces for data exchange with other software.
Supported are:

e datainput and output using pipes.

« an OPUS DDE Server.

e communication with DDE-Servers of other software.
e an OLE interface for VBScripts.

Bruker Optik GmbH OPUS-NT Programming 11

Programming, Controlling and Communication with OPUS-NT

1-2 OPUS-NT Programming Bruker Optik GmbH

External Programs

Programs running under
OPUS-NT

2.1 External Programs

External programs are employed whenever you encounter tasks that cannot be
handled by OPUS-NT, or if dedicated programs to solve these tasks already
exist.

Basically, there are two categories of external software:

» Programs designed by the user to perform specific calculations or
data manipulations, and which are able to communi cate with OPUS.

* Any other third-party program, which can be launched and controlled
by OPUS.

However, the external software must be written to run on the Windows NT plat-
form, because upon the launch of the program, system functions will be called
directly. Therefore, the program must either be a Win32 executable file, a 16
bit Windows, or a DOS program (an OS/2 program without graphical output
will aso work), This requires, that the respective subsystem has been installed
on your computer. In addition, batch files can be used. These files can be iden-
tified by their extensions:

1) .exe
2) .com
3) .bat

Currently, the following OPUS commands are supported by the interface:
* Reading and writing spectral data from/to OPUS spectrum files and
3D files, where the frequency range can be selected.
» Loading and unloading OPUS files.
* Running macros and VBScripts, including parameter exchange.

» Access to information of selected files and the possibility to expand
OPUS by new functions.

» Reading and writing OPUS parameters from/to OPUS spectrum files.
* Reading data from report blocks.
» Generating and positioning windows.

Bruker Optik GmbH OPUS-NT Programming 2-1

Programs running under OPUS-NT

2.1.1 The External Program Command

Programs are launched from within OPUS by the External Program command,

located in the File menu.

[Load File

' Unload File

&7 [Undo Changes

Gl Save File

E Save File &z

25 Send File

44 Send File to GRAMS
Lat Send File to InStep
x5 Delete Data Blocks
& Extemnal Program
YizualB agic Script
[ZF | oad D ata Point Table

Hew Ctrl+r
m_. Open... Ctrl+0
&b Frint... Chil+P

Print Prewigw

Frint Setup...

1 q:hprogrammeh,. . sdefaulk ows

E xit

Figure 1: File Menu

Upon selecting the command, a dialog box opens. Use this dialog box to spec-
ify the name and location of the external program, and any additional parameter
or OPUSfilesyou would like to transfer to the program. To launch the program

click the Execute button.

OPUS-NT Programming

Bruker Optik GmbH

External Programs

External Program |

Select Files(z)/Pragram | Pragram Settings | DDE Command |

Pt
=Y

— Communication
" DDE @ Pipe ¥ Start Program
- Esternal Program

I arme I j Browse |

Parameter I j

- File[z] for external program

Esecute Cancel Help

Figure 2: External Program Dialog — Select Files/Program

2.1.2 The Select File/Program Page

On this page you specify the program you want to start and any additional
parameters. Y ou can either:

» use the Browse button to locate the program and select it by double-
clicking, or

» open the drop-down list to choose a program you ran before, or

* manualy type in the programs name.

The external program will be started after clicking the Execute button. If you
don’t specify a path OPUS will first look in the OPUS directory, next in the
active directory (the directory that was used at last), followed by the Windows
system directory (SYSTEM/SYSTEM32) and any directory indicated by the
path environment variable.

In the following, the parameters of the dialog page will be explained in detail:

Communication

Specifies the type of data communication between OPUS and the external soft-
ware:

* Dynamic Data Exchange — OPUS acts as a client for the external pro-
gram, which in turn must function as a server. Choose this communi-
cation type also if no data exchange will take place.

* Named Pipe — is restricted to programs which were especialy
designed to function as a client to OPUS. A Named Pipe communi-

Bruker Optik GmbH OPUS-NT Programming 2-3

Programs running under OPUS-NT

cation ensure fast data transfer between OPUS and the external pro-
gram, in combination with the possibility of controlling OPUS by
commands.

Start Program Checkbox

If this box is not checked, the program will not be started. This is especially
useful, if DDE commands should be repeatedly used with the same server.

External Program — Name

Enter the name (including the path) of the program to be launched. The drop-
down list holds the names of the programs which were started during earlier
sessions. After theinstallation of OPUS thelistisempty. Alternatively, usethe
Browse button to open aLoad File dialog.

External Program — Parameters

Additional parameters to be used with the external programs can be specified in
this field. A lot of programs accept parameters like the name of a file which
should be processed. These will be forwarded to the external program as com-
mand line arguments. The entries can be accessed by the external program
using the READ_FROM_ENTRY command.

Filesfor External Program

Add the data blocks of the spectra to be processed by the external program, if
the external program supports this option.

24

OPUS-NT Programming Bruker Optik GmbH

External Programs

2.1.3 The Program Settings Page

Here, additional parameters to control the external program can be set.

External Program |
Select Files(z)/Prograrm Program Settings I DDE Enmmandl

£
B

whitidow for external Program

& Momal ' Maximized

' Minimized " Hidden

¥ Run as private YOk

¥ Fun az OPUS Task

¥ “wait for programm to terminate

Execute Cancel Help

Figure 3: External Program — Program Settings Page

Window for External Program

Usually, every program runsin its own window. The size and type of thiswin-
dow can be defined, according to the following options:

* Normal —awindow of standard size will be opened.
* Maximized — the program runs in a window of maximum size.

e Minimized —the program runs in a minimized window. The window
is not visible, but can be opened by clicking on its icon on the Win-
dows NT Task bar.

* Hidden — the program starts in the background and must be called/
closed using special commands.

Run as Private VDM (16bit executables only)

16 bit applications run in the Windows NT Virtual Dos Machine. One advan-
tage of the VDM isits stability; if a program running in aVDM becomes insta-
ble, the VDM will shut down without affecting the operating system. Usualy,
al 16 bit applications run in the same VDM. By checking this box you can
force the operating system to open a separate VDM for the external program,
resulting in enhanced overall stability at the cost of additional administrative
tasks by the operating system.

Bruker Optik GmbH OPUS-NT Programming 2-5

Programs running under OPUS-NT

Run as OPUS Task

If this box is not marked, all connections to the external program will be termi-
nated after the program starts and both, OPUS and the program, will run inde-
pendently.

Wait for Program to Terminate

OPUS waits until the external program has been terminated. This option isuse-
ful while running macros and scripts, which then can make use of a result or
parameter obtained from an external program.

2.1.4 The DDE Command Page

External Program |

Select FiIes[s]#F‘mgramI Frogram Settings DDE Command I

Fas=]
=

—DDE Tranzaction
W E=ecute DDE Tranzactior:

% Poke ™ Execute ™ Feguest

Server Mame |

Topic

|
[term |
Drata |

Esecute | Cancel Help

Figure 4: External Program — DDE Command Page

The DDE Command Page comprises all DDE interface settings to call a server
program.

Execute DDE Transaction
This check box specifies if the DDE server should execute a command

sequence. If so, you have to choose which type of DDE transaction should be
performed:

Poke

This option sends binary data to the server viathe XTY P_POKE transaction.

2-6

OPUS-NT Programming Bruker Optik GmbH

External Programs

Execute

A server command will be executed via the XTYP_EXECUTE transaction.
The external program does not return any data.

Request

A server command will be executed viathe XTYP_REQUEST transaction. The
external program returns the result.

Server Name

Defines the name of the server, which was used by the server to register with the
system.

Topic

Defines the class of the command. The topic depends on the external program
and the command to be executed; consult the documentation of the program
used.

[tem

Specifies the command which will be executed. The value depends on the pro-
gram and the performed command; consult the documentation of the program
used.

Data

This list is only of importance, if Poke was chosen as DDE transaction type.
Enter the binary data, which will be forwarded to the server. All datahasto be
coded in string format, for example 65 OXOA OxOD. If the data is a character
string, it is to be enclosed in hyphens: “ hallo”. In this case, the respective
ASCII codes including a terminating O will be entered in the list. A prefix (i =
int, | = long, d = double, f = float) is used to classify the following data to be of
the given numerical type. zin combination with a figure n is used to add n
zeros.

2.1.5 Writing software

You can write your own client software to communicate with OPUS. These
programs can be used to assign tasks to OPUS and read data from OPUS.
Named Pipes, which are generated on the host computer can be used to handle
the communi cation between your program and OPUS. Named Pipes can easily
be accessed through several programming languages e.g. the language C. InC,
these pipes are addressed by commands similar to the commands used for files
access, fopen and f cl ose. In addition, Named Pipes are supported by
many network platforms.

Bruker Optik GmbH OPUS-NT Programming 2-7

Programs running under OPUS-NT

OPUS also provides a DDE server service, that allows the external program to
trigger an OPUS function with a DDE command.

To create your program, you can make use of various devel oping environments.
The only restriction that applies is that the resulting executable must run on the
Windows NT platform.

2.2 Macros

OPUS offers its own macro system, consisting of an editor, a debugger and a
converter to translate macros written with OPUS-OS/2.

Macros are intended to be used, if a command sequence has to be processed
repeatedly. Combining these commands in a macro saves the user the trouble of
manually calling these commands (and specifying their parameters). Further-
more, frequently used macros can be integrated as command buttons into the
OPUS tool bar.

Macros are text files that can be created using any kind of ASCII text editor.
However, OPUS provides a comfortable Macro Editor for this purpose. In
combination with the OPUS Macro Debugger, macro programming and testing
becomes straight forward.

2.3 VBScripts

OPUS provides an interface to the Microsoft Scripting Engine, which is able
process several scripting languages. As a result, several programming lan-
guages can be used in combination with OPUS. Currently, VBScript is the
most commonly used language; furthermore, Java Script can also be used.
There are no limitations to the design of the user interface, which is constructed
with the help of Microsoft Forms. Asusual, a Formis constructed interactively.

Scripts open away to a nearly unlimited number of applications. They can be
used to guide an OPUS user through the software, without the necessity for him
to become an OPUS expert. Through their ability to communicate with OPUS
directly, scripts can be used to exchange data between OPUS and other soft-
ware, alowing complex calculations or data manipulation. In addition, by
using scriptsit is possible to directly access the data stored in OPUS files.

2.3.1 Accessing Scripts

There are two ways to start an existing script:

» Use the Open command in the File menu (see Fig. 1). Use “*.obs’
as default extension. If you load this type of file, the respective user

2-8

OPUS-NT Programming Bruker Optik GmbH

VBScripts

interface will be launched and the script will be processed.

» Use the VBScript command in the File menu; this command allows
to specify parameters to be used when running the script. Further-
more, this VBScript command itself can be included in macros and
scripts.

2.3.2 The Select Files/Script Page

VizualBaszic Script |
Select Files(s)/Script |
-5
—%izualB azic Script
Script I j
_Browss | [~ “wiait far Script to temminate [~ Hidden
Farameter I j
-~ File[z] for WizwalB azic Script
Execute Cancel HED

Figure 5: VBScript Dialog — Select Files/Script Page

Script

Enter the name (including the path) of the script to be launched. The drop-down
list holds the names of the scripts which were started during an earlier session.
Alternatively, use the Browse button to open a Load File dialog and locate the
script.

Wait for Script to Terminate

OPUS waits for the script to terminate. This option is useful while calling this
function from macros and scripts, which in turn make use of aresult or parame-
ter obtained from the launched script.

Hidden

The script will run in the background instead of being displayed.

Bruker Optik GmbH OPUS-NT Programming 2-9

Programs running under OPUS-NT

Parameters

Additional parameters to be used in combination with the script can be specified
inthisfield. These will be exchanged in string format. This causes an Opusin-
form event in the script, with the string as a parameter.

Filesfor VB Script

Add the data blocks of the spectrato be processed by the script.

2.3.3 Generating a Script

Choose the New button in the File menu and VB Script in the displayed dialog
box to generate anew script. Thiswill automatically open the Form Editor win-
dow.

EﬁWBScriptl _[O0] =]
o

-]
Q
=,

L e L |||]
<I>‘=}ﬁEL|?|IH

7

=]
=

e Eiel Bz ElEE] ===

Figure 6: VB Scripting Editor

Use the Form Editor and the Toolbox to include dialog boxes and controlsin the
script. Select atool and draw arectangle to position anew control. Thetool bar
in the lower part of the window controls the position of the control buttons

within the script. Start the script by clicking on the button. Switch to the

text input window by clicking on the ﬁl button. Refer to chapter 8 to learn
about using the Scripting Editor.

2-10

OPUS-NT Programming Bruker Optik GmbH

Including Macros and Scripts in the Tool Bar

B vBScript2 M=l E
o
Object: IF.:.rm vI Events: I ﬂ

Figure 7: VB Scripting Editor — Text Input Window

2.4 Including Macros and Scripts in the
Tool Bar

Y ou can include your scripts and macrosin atool bar to comfortably access the
most frequently used programs. OPUS must recognize the macro/script (and
the correlated bitmap) upon starting. Therefore, for each macro/script you have
to add an entry in the USERMAC.LST file, stored in the OPUS directory.

Path\File@M enunumber @ temname@T ool tiptext@Statusline
Path\File The path to the macro/script.

Menunumber The number of the menu, in which the entry will appear.

[temname The name under which the macro/script will be listed in
the menu.

Tooltiptext The text which will be displayed as tooltip for the
macro/script.

Satusline The text which will be displayed in the status line while the

macro/script is running.

Bruker Optik GmbH OPUS-NT Programming 2-11

Programs running under OPUS-NT

The numbers of the menus can be taken from the following table:

Menu Menu Number

=

Measure

Manipulate
Evaluate
Display
Print

Macro
Edit
Validation
Setup
File

O©| 0| Nl O] O] | W N

[EEN
o

In order for the macro/script to be represented by an icon on the tool bar, you
have to provide a 16 color bitmap of 16x15 pixelsof thisicon. Thisbitmap has
to be stored as <Macro/Scriptname>.bmp in the same path as the corresponding
macro/script.

Example:

C\OPUS-NT\KALIBRATION.MTX @1@M easure@Standardcalibration
@Macro running

This entry includes the macro CALIBRATION.MTX in the Measure menu. “Stan-
dard calibration” will be displayed as tooltip. The icon bitmap must be stored as
CALIBRATION.BMP in the C:A\OPUS-NT\ directory.

2.5 Auto-starting a Script

In some cases it is desired to automatically perform certain tasks upon launch-
ing OPUS. Inthisway, a specifically configured OPUS user interface could be
automatically presented to the user. To automatically process a script after the
start of OPUS, a parameter has to be included in the Windows NT command
line:

Opus.exe /SCRIPT=start.obs
This command automatically loads and processes the script “start.obs’ after

starting OPUS. The same command can be included in aWindows NT shortcut
for OPUS (refer to your Windows NT documentation).

2-12 OPUS-NT Programming Bruker Optik GmbH

Calling OPUS Functions

All OPUS functions can also be called as a text command from:

e thecommand line

e within macros

» DDE requests of an external client program to the OPUS server
* within scripts

Syntax:

<Function> ([Fil€],{Parameter})

Call from the Command Line

A simple command line interpreter is built into OPUS, but not visible in the
default mode. The command line interpreter can be activated with the Custom-
ize Toolbars command form the Setup menu.

For example, if you enter
Baseline (["e:\opus\data\abboe05.0"] {})

at the command line, the file ABBOEO5.0 will be baseline corrected. If thefile
has not been loaded in OPUS, it will load automatically prior to the baseline
correction.

The file which is to be processed has to be enclosed by hyphens. The empty
braces at the end of the command symbolize, that no parameters have been
specified. In that case, the default values will be used. However, parameters
can be entered in order to make the command more specific. Parameters consist
of athree character code, followed by an equal sign and avalue (e.g. BME=1).
Parameters have to be separated by a comma.

A file can be loaded more than once at the same time; therefore, a number is
added after the file name to identify the version of the file. This number is
called clonecount. Furthermore, a data file usually consists of several data
blocks, which can be addressed separately:

Basel i ne ["e:\opus\data\abboe05. 0" 3: AB]

This command processes the absorption data block of the third version (copy)
of the file ABBOEOQS5.0.

Bruker Optik GmbH OPUS-NT Programming 31

Calling OPUS Functions

Call to a Macro from a DDE Client

A command can also be included in a macro. The same syntax as used for the
command line entry applies, except that instead of the file name a macro file
variable isto be used.

Call from the OPUS DDE Server

If the OPUS DDE server is addressed by another program, the server executes a
command, which then in turn allows this program to control OPUS. After a
DDE connection has been established between the server (OPUS) and the exter-
nal program, commands can be exchanged as Linkltem (e.g. using
XTYP_EXECUTE). As class hame OPUSSystem has to be entered in the
Topic field (see chapter 1.1.4). The command syntax is identical to the com-
mand line entry, preceded by COVMAND_LI NE if necessary.

Client/Server Communication via Pipes

Once a Named Pipe connection was established between OPUS and the external
program (usually named \\.\PIPE\PROGRAM .EXE), commands can be written
to the pipe. Using the language C, this could be achieved with the f pri nt

command, the handle of the pipe and the OPUS command syntax.

OPUS Scripting Interface

The OPUS command syntax also applies for scripts. They only differ in the
way the commands are transmitted. A specia function (member) of the form
will be called by the script, which transfers the command to OPUS:

Form.OpusCommand("COMMAND_LINE...")

32

OPUS-NT Programming Bruker Optik GmbH

Controlling External
Programs

You can also make use of an OPUS interface to control third party software.
This allows you for example to control additional laboratory equipment, that
you would like to use in combination with your spectrometer.

Command Line Parameters

Use the External Program Dialog to forward the command line argument
through the Parameter field. The software interprets the parameter similar to a
command line input. Depending on the program, not all its functionalities may
be accessible via the command line options.

Using OPUS as a DDE Client

If aprogram offersa DDE server interface, OPUS can function asaclient to this
server. Thisis again realized through the External Program command, which
requests DDE commands from the server. It does not matter if the server is
already running, or must be started first.

Every server is registered with the operating system, and assigned a unique
name by which it can be addressed. Enter the commandsin the Itemfield of the
DDE Command page (see chapter 1.1.4), and select the desired transaction (for
example request). Click on the Execute button to start the DDE transaction.

Accessing the OLE Interface with Scripts

Scripts are capable to access e.g. Active X documents directly via the OLE
interface. You can create for example an Excel file with the CreateObject
(“Excel.Sheet”) command. Consult the documentation of the external software
to find out about the supported interfaces.

Bruker Optik GmbH OPUS-NT Programming 4-1

Controlling External Programs

4-2 OPUS-NT Programming Bruker Optik GmbH

Creating Macros

OPUS-NT Macro Language

The OPUS macro system uses a special text based macro language. Macros are
stored in form of text files, which are interpreted and executed directly within
OPUS.

5.1 Creating Macros

OPUS Macros can be written in three different ways:

e Using atext editor.
» Using the interactive Macro Editor.
* Trandating OPUS-OS/2 macros into the OPUS-NT format.

If you are familiar with the syntax you can easily generate macros using any
type of text editor (e.g. Notepad). Just ensure that you save your macro in plain
text format. Make sure you include al three mandatory keywords. “VARI-
ABLES SECTION”, “PROGRAM SECTION” and “PARAMETER SEC-
TION”. A semicolon hasto be used as End of Line character.

5.2 General Syntax Rules

A few syntax rules apply for all elements of the macro language:

e A macro line (command, declaration) must always be terminated by
asemicolon.

* A macro line can be split into several text lines within the text file.

* The three section keywords (VARIABLES SECTION, PROGRAM
SECTION, PARAMETER SECTION) must be present in each
macro, even if a section is empty.

» The section keywords do not need a semicolon.

» Variable names are always enclosed by < > (e.g. <Index>).

e Strings within a macro line must be enclosed by single quotes (' This
isastring’).

* All command lines need brackets after the command name, even if
they do not need command arguments.

* A line beginning with the keyword REM will be ignored.

The most common errorsin programming macros are missing section keywords
and semicolons.

Bruker Optik GmbH OPUS-NT Programming 5-1

OPUS-NT Macro Language

5.3 Macro Keyword REM

Any line in the three macro sections can be disabled during a macro run by typ-
ing REM at the very beginning of aline. This either can be used to temporarily
disable lines for testing instead of erasing them, or for adding comment lines
within the macro for better readability.

When converting OPUS-OS2 macros commands which are currently not avail-
able will automatically be preceded by the REM keyword.

5.4 The Macro Editor

541 General

OPUS-NT provides an user-friendly macro editor, which allows you to write
and edit your own macros. The macro editor comes with syntax check capabil-
ity; every time an existing macro is loaded, when amacro line or variablelineis
edited or when a macro should be stored, a syntax check is automatically per-
formed. In case an error is detected an error message will be displayed and the
changes responsible for the error will be revoked. Y ou cannot exit the editor or
save amacro unless al errors have been corrected.

The editor consists of two windows, one displays the macro code and the sec-
ond the macro variables. Attached to each window is a tool bar; on both tool
and to remove text lines _|

Use the Open Macro button to load an existing macro. The syntax of macro
command lines and variable declarations is checked upon loading a macro. In
case an error is detected an error message will be displayed. You have the
choice to either start the Autocorrect option (see below) or to load the macro
and leave all lines unchanged and correct the errors manually. Please note that
you cannot save a macro or exit from the macro editor unless you have cor-
rected all syntax errors. By clicking on the Autocorrect button all command
lineswill be scanned and all errors automatically corrected.

Follow these stepsto quickly remove syntax errors from your macros:

1) Open the macro editor and load the macro. If your macro contains syn-
tax errors you will see the following error message “ Suppress Error
Messages and load with Auto Correct Option?”.

2) Click on“Yes’. Now the macro will be loaded and all detected syntax
errors will be corrected automatically. The message “Syntax Errors
have been corrected automatically ” will be displayed.

3) Confirming this message opens the “Save File” dialog; store the cor-
rected macro.

52

OPUS-NT Programming Bruker Optik GmbH

The Macro Editor

E Yiew -default.ows: 2 H=]

E =it Open kacro Store Macro

M acro:

Macro Lines

ariables

Figure 8: Macro Editor

button and a
blank line appears below the activated line of code. At the end of the new line
another button .| isdisplayed. This button opensadialog to assist you during

the declaration of special commands (see the following chapter). However, you
can also type in the code manually. Edit aline by a double-click, followed by

clickingonthe .| button.

You enter variables in the same manner in the bottom window; instead of the
Foecial Macro Commands dialog, a box for the declaration of variables will be
displayed after clicking onthe ...| button.

In addition, the code window has two buttons to shift selected lines up 1| or

il down the text body, in order to simplify restructuring the program. Vari-

ables displayed in the lower window cannot be repositioned, but are listed chro-
nologically to their creation.

Y ou can search for any string in the macro command and the variables section.
Enter the string you want to search for in the entry field below the two search
buttons. Start the search by either clicking on the Search Command or Search
Variable button. Click the button repeatedly to find the next occurance of the
search string. After searching the macro is completed the search starts again at
the top.

Bruker Optik GmbH OPUS-NT Programming 5-3

OPUS-NT Macro Language

5.4.2 Special Commands

Open the Special Macro Commands dialog by clickingon _.|. Enter the com-
mand in the Command Name field or choose a command from the drop-down
list. Thislist containsall special commands.

Special Macro Commands
[Command Mame
=
GetDpusFath -
GetlserPath il
GetacoPath
Getversion
CallMacra
Adld Variable | R
GetdmayCaount
Enter Expression
FindString
GetLength
StartLoop
EndLoop
Label
Ok I Cancel I Goto w7

Figure 9: Special Macro Commands Dialog

Depending on the command, additional Parameters will be displayed. In the
case of Functions, that assign valuesto variables two fields, Variable and Index,
are shown on the left side of the Command Name field.

Some macro commands require parameters which can only be selected from a
predefined set of options. In this case the most common used option will be
shown automatically in the entry field. For StartLoop and EndL oop instructions
the loop index will also be selected automatically.

Special Macro Commands

[‘Yariable | Index [Command Mame

|<E0unter> YI |T|_|T |: IFromHeportH eader j

| File: |[<File>:AB.-"Peak]

Feport: |1
Subreport: ID

|

Add Yariable | |
| Header Line: |3
|

Header Part: |F|IGHT

Ll Ll Led Lo

oK I Cancel |

Figure 10: Special Macro Commands Dialog — Command Declaration

Drop-down lists provide variables or key words for all fields, depending on the
type of the parameter. Each field must contain a value for the command to
function properly. The syntax is described in chapter 9. Use the Add Variable
button (see the next chapter) to define a new variable.

The commands listed in the following open their own dialog box:

CalMacro
UserDiaog
StaticM essage

54 OPUS-NT Programming Bruker Optik GmbH

The Macro Editor

Static Message B
Title: IMeasuremenl aof Multiple S amples

Option: [STANDARD = Option: [SHOW =
|EDIT =] Jiha of Samples| =] Line 1 |<[21Day> <[2Manth> <[2]Ysar> =]
[BLANK. = =] Line 2. | =]
f BLANK = =] Line 3 | =l
[BLANK. = =] Line 4: | =]
f BLANK = =] Line 5 | =l
f BLANK = =] Line 6: | =l
- = bt | =]
r—- =l il =
[BLANK. = =] Line | =]
[BLANK. = =] Line 10: | =]
f BLANK = =] Line 11: | =l
f BLANK = =] Line 12: | =l
[BLANK. = =] Line 13: | =]
f BLANK = =] Line 14: | =l
ITI Cancel | ITI Cancel |

Figure 11: User Dialog Setup and Static Message Dialog Box

Call a Submacro E
Sub Macro: I<path>\submacm1.mt:¢
Pazzed Parameters Returned Parameters
[«<Filex:AB] [¢Mew File»:ARB]

<Factor>

Ll e Lf b L e f P e e f L f L«
I 0 K R R K

ak I Cahicel |

Figure 12: Call a Sub Macro Dialog Box

The command Enter Expression is an exception in that sense, that instead of the
command name an equal “=" sign will be used.

Bruker Optik GmbH OPUS-NT Programming 55

OPUS-NT Macro Language

Special Macro Commands

[ariable | Index [Command Name

|<File> '”TI_|T F IEnter Expression j
|

E xprezsion: |'<Directory>\<FiIeN ames' j

Add Variable |

ak I Cancel |

Figure 13: Special Macro Commands — Enter Expression

Thisdialog for example generates the program code

<File> =’ <Directory>\<FileName>’;

54.3 The Variable Dialog Box

This dialog box will open after clickingon L..|. Choosethetype of the variable
by checking the respective radio button. Enter aunique name in the Name field,
and if necessary also a start value. If no start value is stated, O will be taken in
case of numerical variables and an empty string for all other variables. Check
the Update Automatically box to have the value of the variable automatically
refreshed. These variables are labelled by a preceding asterik “*”.

New/E dit Variable |
Static
= STHING ¢ BoOL ¢ BUTTON
 NUMERIC FILE
Mame I
Walue I

[T Update &utomatically

k. I Cancel

Figure 14: New/Edit Variable Dialog

5-6 OPUS-NT Programming Bruker Optik GmbH

The Macro Editor

If you select FILE as variable type you can specify, besides the name, one or
more data blocks in the fields that appear. Choose the desired block type from
the three drop-down list and press the Add button; they will appear in thelist in
the lower part of the window.

The first list contains a complete list of spectrum data blocks. The second list
consists of derivative blocks, and the last list comprises the rest of the extended
blocks. Blocksthat are marked by aslash “/” are linked to spectral data. Some
blocks can either be linked or not, like for example the Search data block; while
the report of a spectrum search is linked to the spectral data block (AB/Search),
the report of an information search is not.

5.4.4 Inserting OPUS Commands

OPUS commands are inserted by simply selecting the desired OPUS function
from the pull-down menu or the tool bar while you edit a macro. This causes
the program code to be inserted below the selected line or to be appended to the
macro if no line is selected. You can reposition the code within the program
with the up and down buttons. OPUS commands can be edited in the same way
as any other macro command. Double-click on the code line and pressthe _..|
button. The dialog box of the OPUS command will open and you can alter your
settings.

When you select acommand its dialog box will be displayed as usual, allowing
you to set the function parameters. The list of files to be processed is replaced
by a drop-down list comprising al file variables. Instead of a file name you
select a variable. This requires that the variable you want to use must be
defined beforehand.

Bazeline Cormrection |

Select Files | Select Method I

— File[z] to Correct

I <SHesultFile 1>:AB k

[<SResultFile 1>:AB]

Comect Cancel Helm

Figure 15: Inserting OPUS Commands

Bruker Optik GmbH OPUS-NT Programming 5-7

OPUS-NT Macro Language

After clicking the command button to execute the command a dialog appears,
listing all necessary parameters with their names and current values. In the last
column choose a macro variable for any parameter from the list. The parame-
terswill be assigned to these variables during runtime of the macro.

The checkbox at the beginning of each row determines, whether the parameter
will be entered into the program line (box checked) or the parameter section.
Parameter s which are assigned variables must be included in the program
line.

Parameter Parameter Hame Original Value Azszign Variable
1 v DAP Data File Path "Q:\Programmetopus 2.04" =
2 v DAF initial filename for load |'Abboe05.0°
3 [+ INP Info Text Path "QProgrammetopus 2.04
i ¥ IFP Correlation Tahle Path "Q:\Programmetopus 2.04"
5 [+ INM Info Definition Filename |'DEFAULT"
& [+ IFN Info Definition Filename |'DEFAULT"

K I Cancel

Example

Example

Figure 16: Assigning Parameters

Some OPUS functions are able to return results to the macro. For example a
data acquisition generates afile that must be accessed by the macro. In this case
the macro editor automatically generates a new FILE variable named
<$ResultFile, x>, where x will be incremented automatically.

<$ResultFile 1> = MeasureSample (0,{ ...

If OPUS functions return text instead (e.g. SendCommand), an additional selec-
tion list will be displayed above the parameter list of the parameter diaog.
Choose a (already defined) variable from this list.

<Result> = SendCommand (0 ...

545 Editing OPUS Command Lines

OPUS command lines are edited similar to macro command lines. First select
the line by double-clicking it. Clicking onthe .| button causes the dialog box
of the function to open; the current parameters will be displayed. After clicking
on the execution button of the function, the dialog box for parameter selection
will appear.

OPUS-NT Programming Bruker Optik GmbH

Debugging Macros

5.5 Debugging Macros

The term “Debugging” means a step-by-step execution of a macro; otherwise
the program execution continues until a stop mark is reached. This option
greatly facilitates locating and anayzing errors.

Y ou load the macro using the Debug Macro command; after you have opened
the macro by double-clicking on the file name you see a list containing the first
few lines of the macro program. Click on the Variables tab to obtain alist of all
variables used in the macro and their current value.

Debug: A:AProgrammer0PUS HTAMacroMT_COPY MTX |

Macro | W ariables I

| t acro Line -
dzerDialog [0, 0, EDIT:<Path Reference Spectrax, EDIT:<Mame Energy A efer
UszerDialog (0, MODEFAULTEUTTOM, BLAMK, TEXT:<Output 1>, BLANE, TE
Label [Label 1];
CtaticMeszage [SHOW, {<$Meszage Line 13, <$Meszage Line 23, < tMessage
Copy [<Path Reference Spectras4<Mame Energy References, &:;

#
sy

Copy [<Path Reference Spectrazh<Mame Energy Testzpectrums, &:);

If [T est Frequency Calibration: ECQ. FALSE];

Goto [Label 3);

* 5 Endif [);

* 10 Copy [<Path Reference Spectrazh<Mame Frequency Testspectrun:, A:);
* 11: Label [Label 3);

+ 12 IF[<Glazs Filter 2> EQ. FALSE]:

* 12 Goto[Label 4);

*
0~ momo e L

+ 14 Endif); -

A | | 3

Type | Hame | " ale

4| |]
Single Step Fun to Breakpoint Ahbort b acro |

Figure 17: Debugging a Macro

Also you can search atext string within a macro or on the variable page. Enter
the string you want to search in the entry field left from the Search button. Start
the search by clicking on Search. The line containing the string will be
selected. If you click on Search repeatedly the following occurrence of the
string is found, until the macro has been completely scanned. After that, the
search will begin again at the top of the macro. The line number in which the

Bruker Optik GmbH OPUS-NT Programming 59

OPUS-NT Macro Language

string was found will be displayed next to the Search button.

On the Variables page two lines alow separate searches for either the variable
name or avariable value. The search run works like searching atext stringin a
macro. Please note that values of array variables can only be searched if the
array variable is expanded by double-clicking on the preceeding plus sign prior
to the search run (see below).

Debug: A:-\Programmer0PUS NTAMacroMT_COPY _MTX Ed |

Macio “anables I

Type | Name | value -
1: 5TRIMG Fath Reference Spectra

2 5TRIMG MHame Energy Reference

3 STRIMNG MHame Glagzz Filker & Reference

4: STRIMG MHame Glazz Filker B Reference

5: STRIMG Mame Energy Testzpectrum

E: STRIMG Mame Frequency Testspectum

7 STRIMNG MHame Glazs Filker & Testzpectrum

3 STRIMG MHame Glazs Filter B Testspectium

3: BOOL Test Frequency Calibration FaLSE

10: BOOL Glazz Filter A FALSE |
11: BOOL Glazs Filter B FALSE

12 BUTTOM YES Lahbel 1

13 BUTTOM NO Lahbel 2

14 STRIMG Cutput 1 The Test Result iz INOT OF
15 STRIMG Output 2 If the Reference Spectra ar
16: STRIMG Output 3 ghould be copied to a diske
17 STRIMG Output 4 irzert firzt & formatted dizkel
18: STRIMG Output & drive A, then click on YES.
19 STRIMG Output & athenwize click on MO

20: STRIMG Output 7 -
- e _*I_I

Figure 18: Debugging a Macro — Macro Variables

Arrays are marked by aplus sign in the Variables window; the value of an array
isthe one chosen for example from a selection of a pop-up menu. Double-click-
ing expands the array, that is every value of the array will be displayed. The
index of each value isdisplayed in the “Name” column.

5-10 OPUS-NT Programming Bruker Optik GmbH

Debugging Macros

F0perataor Lk novn -
[0 Lk novn

3 BOOL Dizplay Repart FALSE

(4 4 BOOL Frint Repart TRLUE

5 STRIMNG Printer File PRINTER.TXT

B STRING Printer

[+ 7. STRING Titl= 1 | ngtrumenten-Test

Figure 19: Macro Variables — Collapsed and Expanded Array

5.5.1 Stepping Through a Macro

The first line of the program is marked by a little green arrow to indicate the
next line to be executed. This line can be executed by clicking the Sngle Sep
button. The arrow moves to the next command to be executed (not necessarily
the next program line) and stops. Aslong as a command is being executed you
cannot access the window. If the values of variables were changed by a macro
command line, they will be displayed with their new values.

Variable values can be changed at run time in the debugger. Select the line con-
taining the value to be changed. Enter the new value in the entry field next to
the Change Value button and click on the button. For numeric variables only
numbers are allowed. For BOOL variables either a number (0 or 1) or TRUE

and FAL SE are accepted.
= 14 Endif[]; -
4 I I 3
Type | M ame | Walue | -
1. 5TRIMG Fath Reference Spectra -
2 STRIMG M ame Energy Reference
FSTRIMG MHame Glazz Filker & Reference
A STRIMG Il ame (Slaze Filter B B aferanres j

Single Step Run to Breakpaint Ahart bacm

Figure 20: List of Macro Variables with Changed Values

5.5.2 Calling Sub Routines

If the debugger encounters a sub routine call (“Call Macro....”) while stepping
through a macro, you have the choice between two options:

Single Step Fun to Breakpaint | Step Into Sul:umacrl:ul Abort Macro | ‘ ‘

Figure 21: Macro Debugger — Options for Sub Routines

If you continue in Sngle Sep mode the sub routine will be processed at once,
i.e. the debugger evaluates the routine without explicitly stepping through it.
The cursor stops at the next line of the main program. You should use this
method only, if you are sure that the sub routine contains no errors.

Bruker Optik GmbH OPUS-NT Programming 5-11

OPUS-NT Macro Language

Example

On Sep into Submacro an additional debugger window opens and the sub rou-
tine will be executed step-by-step. After the sub routine is completed its win-
dow will be closed automatically, and the execution of the main program
continues. Usethismode if the sub routineis likely to contain errors.

5.5.3 Placing Stop Marks

Double-clicking on aline number in the debugger window will set a stop mark,
indicated by asmall icon at the beginning of the line. Remove the mark by dou-
ble—clicking onit. A stop mark causes the debugger to halt at this program line,
if Run to Breakpoint is used for the execution. Thisis especially helpful while
debugging large macros, in case you are certain that the program code executed
before the marked line isfree of errors. Run to Breakpoint takes you directly to
the line you have marked. Be sure that no branch occurs which causes the pro-
gram to bypass the stop mark. In thiscase, or if no stop mark has been inserted,
the macro will be executed completely without a stop.

1 <$OPUS-Path:
v 2 <Macro Pathy -
3 Ofenwendete B
+ 4 IlzerDialog [<Ti
+ B <Path Referen:
* B
+ 7

<Path Report:
<3E spenment F
B <Flntegration k
IQEEI [f [<Setup Dorne
0 Goto [Label 7]
+ 11 Fwelif 11+

Figure 22: Stop Mark

554 Aborting a Macro

The Sngle Step mode can be aborted with the Abort Macro button. This com-
mand is not active, while the debugger is busy evaluating a command.

Breakpoints which are set during debugging can be stored in the macro text file
with the Store Breakpoints button (see Figure 17). Whenever the macro is
started in a debugger session these breakpoints will be activated automatically.
When sub macros are called in a debug session, the debugger will automatically
stop at the predefined breakpoints in the sub macro.

The breakpoints are stored in a new section starting with the keyword
“BREAKPOINTS’ (and followed by the line numbers of the breakpoints)
which is appended to the macro. Please note that each line numbers requires a
separate line and has to be terminated by a semicolon.

BREAKPOINTS
3;

5-12

OPUS-NT Programming Bruker Optik GmbH

Compiling Macros

12;
38;

Thiswill set breakpointsto lines 3, 12 and 38.

55,5 Automatic Stop

If a program line cannot be executed due to a programming error, the debugger
stops running the macro; the cursor indicates the faulty command line.

5.5.6 Error Messages

While a macro runs only fatal error messages are displayed while other errors
have to be handled with “If (MACROERROR, .EQ., TRUE);” constructs.
When amacro is run in debug mode, all error messages will be shown to facili-
tate debugging and help locating critical sectionsin a macro.

5.6 Compiling Macros

Macros are generally written and stored as text files. During execution the
macro text file is interpreted i.e. the text format is converted (compiled) into a
binary format which can then be executed. The Compile function performs this
step separately and generates a macro file with a binary format which can be
executed directly.

Reasons to use compiled binary macros:

» alarger binary macro starts faster
e abinary macro cannot be modified by an unauthorized user

Please note that binary macros cannot be changed directly. If modifications are
necessary you need to modify the original text based macro and compile it
again. Compiled macroswill also not run in the macro debugger.

To prevent permanent changes of macros using the CallMacro or RunMacro
functions you need no longer specify the file extension for the sub-macro. If no
extension is specified the system automatically uses the file type which is
present. If both types are found the system will use the text version.

5.7 Macro Converter

Use the Macro Converter to trandate macros written under OPUS-OS/2 into the
OPUS-NT format. The conversion may require some changes as a result of the
different macro syntax.

Bruker Optik GmbH OPUS-NT Programming 5-13

OPUS-NT Macro Language

0S/2 macros adl have the file extension “.MAC”, OPUS-NT macros the exten-
son“.MTX”. The Macro Converter generates atext file with name of the OS/2
macro and the extension “.MTX" as well as a log file with name of the OS2
macro and the extension “.LOG”.

The Macro Converter was designed as an assistant, who guides you through the
necessary steps. Calling up the Converter first displays some general informa-
tion about the use of the program. On the second page, you specify the name of
the OS/2 macro to be processed, either by typing it or use the Change Macro
function to browse the directory. You can only switch to the next page, if you
entered a valid macro name.

Select 05/2 Macio |

Select Macra for conversion

WIS . OFUIS N TWMACRD

Macro Wame: [TEST

Change Macro

< Back I Ment » I Cancel HEelm

Figure 23: Select Macro for Conversion

The next page contains the settings for the destination directory, and the name
of the resulting OPUS-NT macro. The destination directory is by default the
same as the one containing the OS2 macro. The default directory and macro
name can be changed either manually, or by navigating to another directory
using the Change Output File button. Start the conversion by clicking on Fin-
ish.

5-14

OPUS-NT Programming Bruker Optik GmbH

Macro Converter

Example

Example

Specify NT Macro |

Set Oputput File [Extenzion iz M T]

I ol M T ProfilestadministratorD eskto

Output Filename: Smth-13a

Change Output File |

< Back I Finizh I Cancel HEelm

Figure 24: Define New Macro Name

Log Files
During the conversion of an OS/2 macro alog file will be generated containing

 indications which part of the macro are to be altered manually.
 indications about added code.

 indications about removed code.

» warningsfor sub routine calls.

Y ou should check the log file before you attempt to run the converted macro.

System Variables

If the OS/2 macro contains system variables (e.g. directories), code will be
added during the macro conversion, that ensures the correct initialization of
these variables. Information about which lines have been changed are available
inthelogfile.

STRING <$0PUS-Path>; (system variable of the main OPUS directory)
Thisvariable will beinitialized by:

<$OPUS-Path> = GetOpusPath();

STRING <$Data File Path>(system variable of the OPUS data directory)

Bruker Optik GmbH OPUS-NT Programming 5-15

OPUS-NT Macro Language

The variable will be initialized by:

<$Data File Path> = GetOpusPath();
<$Data File Path> = '<$Data File Path>\DATA’;

Functions Not Implemented in OPUS-NT

Functions that are currently not implemented in OPUS-NT will be “commented
out” by adding a REM command before the function. Information about which
lines have been changed are available in the log file.

Measurement Commands

Only those parameters will be added in the command line of the Macro Editor,
which were assigned variables. All other parameters are included in the
PARAMETER SECTION. If the parameters XPP (experiment path) and EXP
(experiment name) are not assigned, awarning will be included in the log file.

Calling Sub Routines

Sub routine calls always include afixed path statement. A warning isentered in
the log file.

Obsolete Parameters

Parameters that are obsolete in OPUS-NT will be handled like commands that
are not implemented i.e. a REM command will precede the parameter and ren-
der it inactive.

57.1 Variables

The types of variables and their handling in OPUS-NT differ from their use in
0s/2.

5.7.1.1 Variable Conversion

The following table indicates how variables are mapped.

OPUS-0S/2 OPUS-NT
NUMERIC NUMERIC
TEXT FOR EDIT STRING

TEXT FOR OUTPUT STRING
CHECKBOX BOOL
COMBOBOX STRING (Array)
BUTTON BUTTON

FILE FILE

LABEL no variable

5-16 OPUS-NT Programming Bruker Optik GmbH

Macro Converter

Example:

5.7.1.2 Combobox Variables

COMBOBOX variables common in OPUS-OS/2 will automatically be con-
verted to STRING variables in OPUS-NT. The values assigned to the COM-
BOBOX variable will be transformed to an array. Depending on the definition
of the COMBOBOX variable, the STRING will be initialized in the PRO-
GRAM section of the OPUS-NT macro asfollows:

COMBOBOX with user-defined text:

<Combo>[0Q] ='abc’;
<Combo>[1] ='xyz;

COMBOBOX containing data of atext file:
<Combo> = ReadTextFile (D:\OPUS\PRINTER.TXT);

COMBOBOX containing the value of an Enum parameter:
<Combo> = GetEnumL.ist (DXU);

5.7.1.3 Selecting Variables

Variables can be marked by an preceding “*” to cause the variable value to be
refreshed, as it was practise in OPUS-OS/2. The new variable values will be
entered directly in the VARIABLES section of the text file.

*STRING <Text>="'0ld Text’;

<Text>='New Text’;

After the macro has been started once, the declaration line will change to:
*STRING <Text>="New Text’;

5.7.2 Differences in File Handling

The handling of spectrum filesin OPUS-NT while executing OPUS functions,
differssignificantly from its OS2 counterpart. In OPUS-NT the Overwritefiles
and Create new files options for functions from the Manipulation menu no
longer exist. Instead of the original datafile, an internal copy of thefileis gen-
erated and used for data manipulation. The same procedure is applied by func-
tions of the Evaluation menu (e.g. peak table generation, integration). The
result is then appended to the copy of the datafile in form of a new data block.
These modifications are indicated by ared rectangle next to the file name in the
OPUS Browser, while a blue rectangle symbolizes an unmodified datafile.

The result of a manipulation can be stored by saving thefile. Therefore, such an
OPUS command will be translated in different ways, depending on the options

Bruker Optik GmbH OPUS-NT Programming 5-17

OPUS-NT Macro Language

chosen. The following examples illustrate this using the Baseline Correction
command.

Example — Overwrite Files

VARIABLES SECTION
FILE <File> = AB;

PROGRAM SECTION
Basdline([<File>:AB] , {BME=1, BCO=0, BPO=64});

Note that the modified file is not saved by the macro. If you want to save the
result, you need to include the Save command or save the file manually.

Example — Create new files

VARIABLES SECTION
FILE <F1> = AB;
FILE <@result401>;

PROGRAM SECTION

Basdling([<F1>:AB] , {BME=1, BCO=0, BPO=64});

SaveAs([<F1>:AB], { OEX="1", COF=2, SAN=WORK.301,
DAP=E:\opuss\WORK});

Restore ([<F1>:AB].{});

<@result401> = L oadFile (E:\\opuss\WORK\WORK.301, WARNING | ABORT);

If the Create new files option was chosen, the converter expands the OPUS-OY
2 command automatically to guaranty compatibility.

line 1: Baseline correction of the original file.

line 2: The result of the correction is saved as awork file.

line 3: The original fileisrestored.

line 4. The work fileisloaded for further access by the macro.

The work fileis stored in the directory indicated in the macro.

5.7.3 System Directories

The system path variables of OPUS-OS/2 are no longer supported. These vari-
ables will beinitialized by the appropriate command lines.

5.7.4 Function Parameters and Parameter Assignment

The command lines of a converted macro contain all necessary parameters of
OPUS functions (except the measurement functions) in a parameter list. New
parameters which did not exist in OPUS-OS/2 will be taken from the active
standard parameter set during conversion.

5-18

OPUS-NT Programming Bruker Optik GmbH

Macro Converter

Variables for parameter values that were used in OPUS-OS/2 in the form of an
assignment, are now included directly in the parameter list of the command
(e.g. ..., DAP = <data path>, ...). They will be replaced by their current value
prior to the execution of the command.

575 Time-behavior of Macros

OPUS-0OS/2 macros are executed asynchronous, i.e. commands are sent to the
OPUS task manager, who then decides when to execute the commands. Only a
few functions (e.g. dialog boxes, wait function) were able to pause a macro
until all commands forwarded to the task manager were processed. In some
cases a hecessary synchronization of the macro had to be achieved by including
wait functions with the wait time set to O.

OPUS-NT macros are executed synchronous, i.e. the next command will only
be executed after the termination of the currently processed command. This
makes the use of wait functions as described above obsolete. These commands
are removed upon macro conversion.

5.7.6 Print Functions

Currently, the Print function has not been implemented. OPUS-OS2 print
commands will be converted to PrintToFile function. Make sure, that the out-
put directory and file name was set properly.

57.7 Calculations with Variables

So far, caculations that contained only variables (and no spectral data) had to
be performed with the spectrum calculator. OPUS-NT supports the direct use
of mathematical expressions. For example

<Number> = <Number> + 1;

isavalid statement in an OPUS-NT macro. This change in syntax considered
by the macro conversion routine.

5.7.8 Jump Instructions

OPUS-OS/2 jump instructions are replaced by “ Goto (Label)” statements. Con-
ditional Jumps are expanded to three lines:

0S/2 Macro:Jump to Label if Expression;
NT Macro:If (Expression);

Goto Label;

Endif;

Please note, that jJump statements from OPUS-OS/2 macros can be simplified
by using the new If ... Else ... Endif structure. However, thisis not done auto-
matically; in case of macros containing several conditional jumps we recom-

Bruker Optik GmbH OPUS-NT Programming 5-19

OPUS-NT Macro Language

Example:

Example:

Examples:

mend to manually replace the If ... Endif structures by If ... Else ... Endif
structures.

5.7.9 Start Loop with For Each Option

The “Start Loop” instruction in combination with the option “For each File” is
now identical to all other “StartLoop” instruction. Instead of the counter or a
NUMERIC variable, just state the FILE variable as a counter.

FILE <File> = AB;

StartL oop ([<File>], 0);loop count = number of files selected

5.7.10 Load Multiple Files

The “Load” function with the “Load multiple” option is replaced by the general
“LoadFile” macro function, followed by a “StartLoop” instruction, with the
FILE variable specified for the loop count.

<File> = LoadFile (D:\OPUS\DATA*.0’, WARNING | ABORT);
StartL oop([<File>], 0);

EndL oop(0);

5.7.11 User Dialogs

In OPUS-OS/2 macros, the appearance of linesin a user-defined dialog box was
determined by the variable type. Now, the appearance of a dialog box lineis
almost independent of the variable type. It is controlled by keywords added to
the “UserDialog” command.

STRING <Text>;

The variable <Text> can be used for an “Edit” control as well as for comment
lines or a combo box.

EDIT:<Text> showsan “Edit” control.
TEXT:<Text> showsacomment line.

COMBOBOX:<Text>shows a Combobox.

5.7.12 Client/Server Calls

The Client/Server function of OPUS-OS/2 is also implemented in OPUS-NT.

5-20

OPUS-NT Programming Bruker Optik GmbH

Writing Portable Macros

Concerning the operating system, the OPUS-NT function External Program
differs dlightly from the OPUS-OS/2 Client/Server function. If the external pro-
gram runs in the Windows NT environment, it can be started in the same way as
in OPUS-0S/2.

Not supported are OS/2 programs with a graphical user interface and Rexx
scipts unique for OS/2. Simple DOS based software is supported by OPUS-NT.

For Named Pipes there apply certain restriction in Windows NT. While in
OPUS-0S/2 “\PIPE\OPUS\PROGRAM.EXE" was used as default name, Win-
dows NT expects a pipe name of the form “\\.\PIPE\PROGRAM.EXE". Self-
written software that is supposed to exchange data with OPUS-NT in that man-
ner has to be adjusted if you want to use it in Windows NT.

In case the macro should wait until the external program is terminated the Wait
for program to terminate box has to be checked.

The function External Program supplies the return code of the external software
or the result of a DDE command as a parameter RS1. The return code is saved
asa STRING variable.

5.7.13 Conversion Functions

Conversion functions (like JCAMP, data point table) no longer exist in OPUS-
NT. Non-OPUS files are converted automatically upon loading the file, if
OPUS recognizesthe file format. The converted file will then be saved in a dif-
ferent format, if the appropriate switches are set when using the SaveFile com-
mand. When converting OPUS-OS/2 macros these changes have to be done
manually.

5.8 Writing Portable Macros

A portable macro allows to copy and run a macro written on a specific system
on any other system. Thiswill be straightforward if both systems have an iden-
tical directory structure which is expected by the macro.

In general, there are several ways to write such macros:

1) All drive and path specifications are stored in variables, which then can
be set via a user dialog. If these variables are marked for update, they
must only be set during the initial run of the macro. If only afew paths
areincluded in the macro, this may be acceptable, but with anincreasing
number of pathsinvolved it can become tedious work.

2) A much better and preferable solution isto use a variable home directory
with a fixed subdirectory structure. Not only the single variable, which
has to be set, but also the transparency of this macro to the user is guar-

Bruker Optik GmbH OPUS-NT Programming 5-21

OPUS-NT Macro Language

anteed, because results are located in the same subdirectories on all sys-
tems.

3) The best solution uses either the OPUS path or a User path as home
directory, with afixed sub directory structure. In this case, the first com-
mand line in a macro must be <Path> = GetOpusPath (); or <Path> =

GetUserPath (); which sets the variable to the current path. Thereis no
need to set the path manually.

During the installation of OPUS-NT, some sub directories are already created.
These directories are accessible by all users. If accessto some of the sub direc-
tories should be restricted, it is still recommended to maintain the OPUS sub
directory structure.

OPUS the main path for the OPUS program and all files necessary to
run OPUS.

DATA sample data.

MEAS measured spectra .

XPM experiment files.

METHODS method filesfor integration, QUANT, IDENT etc.
MACRO Macros.

SEARCH intermediate search reports and method files.
PRINTS output from printing into afile.

SCRIPTS plot layout scripts.

5-22

OPUS-NT Programming Bruker Optik GmbH

General Remarks

How to Write Macros

In the following you will find various examples of macros used in every-day
laboratory work. All of these examples are written with the OPUS-NT Macro
Editor. To help you understand how the Macro Editor works, we will explain
every step in detail for thefirst few macros. If you are not familiar with the Edi-
tor, we recommend that you work through these macros step by step asthey are
listed here. After finishing this chapter you should be able to design complex
macros by yourself. All of the examples are aso available as files on the
OPUS-NT CD.

The following chapters are divided into several sections:

e Task: the purpose of the macro
* Macro functions: explanation of the macro commands used in the

macro

* OPUS functions: explanation of the OPUS commands used in the
macro

* Generating the macro: the generation of the macro code is
explained step by step

» Listing: alisting of the macro code

* Running the macro: the specific features of the macro are empha-
sized

Before you start create a directory where you will save your macros. Keep in
mind that sometimes macros build on macros written earlier in this chapter.

6.1 General Remarks

6.1.1 Syntax

A detailed description of the macro syntax is given in chapter 9. Since we are
exclusively using the Macro Editor, all code will automatically be generated
according to the syntactical rules. However, if you like to try the direct com-
mand entry using atext editor, you should read the corresponding chapter first.

6.1.2 The Use of Variables

A macro has to fulfill various tasks, like data handling and data processing, or
making decisions depending on the outcome of an OPUS report. These tasks
can only be performed effectively, if the macro operates with variables instead
of constants like file names, dates etc. Therefore, the OPUS macro systems
offers several types of variables.

Bruker Optik GmbH OPUS-NT Programming 6-1

How to Write Macros

If anumerical value should be changed during run time of the macro, avariable
of the type NUMERIC has to be employed. For file names on the other hand,
which can be supplied by the user during run time, avariable of type TEXT isto
be used.

6.1.3 Variable Names

A variable isidentified by its uniqgue name. The name will be displayed in dia-
log boxes, and should therefore express the purpose of the variable. For exam-
ple, the use of the name “x start frequency” provides more information that just
the name “x”.

6.1.4 Variable Types

Several types of variables are available in the OPUS-NT macro language. They
are summarized in the following; details about the syntax are given in chapter 9

Text Variables
Text variables are used to save text, like file names or results.

Values can either be entered through dialog boxes, using statements or read
from parameters or reports.

Numerical Variables
Numerical variables are used to save numbers.

Values can either be entered through dialog boxes, using statements or read
from parameters or reports.

Boolean Variables
Boolean variables are used to save the values TRUE or FALSE.

Values can either be entered through dialog boxes, using statements or read
from parameters or reports.

File Variables
File variables are used to save spectra.

Spectra that have already been loaded into the OPUS Browser are assigned to
the variable using a dialog box. Spectra that were generated by a macro are
assigned via statements.

62

OPUS-NT Programming Bruker Optik GmbH

Measure 1 — A Simple Macro

Command Buttons
Command buttons are used to control the flow of a macro.

Command buttons cannot be changed during run time, and therefore are not
variables in the true sense. However, they are declared in the variable section,
and are always linked to a Goto instruction condition.

Except command buttons all variables can also be used as arrays, i.e. they can
hold more than one value. The different values are addressed using index num-
bers.

6.1.5 Variable Type Conversion

Text and numerical variables (and boolean variables under certain conditions)
can be converted into each other. Detail are given in the Macro Reference sec-
tion.

6.2 Measure 1 — A Simple Macro

Task

Acquire a spectrum using a macro.

M acr o Functions

This example uses no special macro functions.

OPUS Functions
M easurement

The measurement command has a special status compared to normal OPUS
functions; data acquisition requires a multitude of parameters, some of which
are linked to each other. Before you use the measurement command in a macro,
you need to define an experiment file, which you will use in combination with
the macro. For the use with this example macro, you must generate an experi-
ment file “DEFAULT.XPM”, which we save in the directory
C:\OPUS NT\XPM. The type of data acquisition should be set to absorption
spectrum.

Generating the Macro

1) Create an experiment file in case you haven't done so already.

2) From the Macro pull-down menu, open the Macro Editor. The Editor
opens with two empty windows, one for program code and the other to

Bruker Optik GmbH OPUS-NT Programming 6-3

How to Write Macros

3)
4)

5)

display variables. The functionality of the Macro Editor was explained
in chapter 5.4.

From the OPUS Measure pull-down menu, select the Measurement
command; thiswill open the Measurement dialog box.

If the experiment file you created is not listed, you have to load it by
clicking the Load button on the first page of the dialog.

Now click on Collect Sample. A dialog with all parameters of the Mea-
surement command is displayed.

Azzign Macro Yanables to Function Parameters E3

Parameter

Parameter Hame Original Value Assign Variable il

¥ EXP

Experiment IT.xpm"

[XPP

Exzperiment Path 'CHROPUS HNTXPM'

CADC

Ext. Analog Signals]

[T AF2

Apodization Function B3

[~ AMF

Arnpl. Modulation Frequency|O

[ARP2

Apetture Setting 0.3 mm'

[APF

Apodization Function B3

L=l e el T S O

CAPT

Apetture Setting 'Cpen’

[AGM

Acguisition Mode oo

[BMS

o

Beamsplitter Setting Br'
" hrarn Dicrnlaw Sractrom 1 _ILI
4

o]

Cancel

Figure 25: Assigning Macro Variables

Thefirst column list the Parameter abbreviationsthat are used by OPUS.
In addition, a check box controls, whether the parameter will be entered
in the command line or the parameter section. While for all other OPUS
commands these check boxes are selected by default, thisis not the case
for the Measurement command. Only “Experiment” and “ Experiment
Path” are checked.

In the second column, the parameter name is displayed followed by the
current value of the parameter listed in the third column. The values for
“Experiment” and “Experiment Path” are the ones you entered in the
Measurement dialog box.

The last column is reserved for macro variables. In our case all table
cellsin this column are empty.

6) Click on OK. Thefollowing line will appear:
<$ResultFile 1> = MeasureSample (0, { EXP="it.xpm’, XPP="C:\OPUS_NT\XPM1);

2 3 4 5 6 7

: <$ResultFile 1> is a FILE variable automatically generated by the Macro

Editor, which represents the acquired spectrum. This variable appears
also in the variable list, together with the name and the spectrum data
block as specified in the experiment file.

: The equal sign indicates that the function returns a file or a value, which

will be assigned to the variable.

: The name of the Measurement command is MeasureSample. You find a list

of all OPUS command names in the OPUS Command Reference section.

OPUS-NT Programming Bruker Optik GmbH

Measure 1 — A Simple Macro

4: For all OPUS commands the file list follows the parentheses. Because no
spectrum file is processed during the measurement, the value is 0. Note
that a file list is mandatory for OPUS functions.

5: Separated by a comma and enclosed in braces is the parameter list of the
function. This list usually consists of several parameters separated by
commas. If no parameters are used the braces will be empty.

6: A parameter declaration consists of the abbreviation of the parameter, an
equal sign and the parameter value. In case the value are characters
(text), they must be hyphenated.

7: A close bracket followed by a semicolon indicates the end of the com-
mand line.

7) Thenewly generated variable will be declared in the variable list:

FILE <$ResultFile 1> = AB;
| 2 3 45

I: The variable type is FILE.

2: The name of the variable always has to be enclosed by the “smaller as”
and “greater than” signs. Variables, that are automatically generated, are
preceded by a Dollar sign to distinguish them from user-defined variables.

3: The equal sign is mandatory in the case of FILE variables.

4: The equal sign is followed by the list of data blocks of the selected file
(only in the case of FILE variables). In our example, the file consists only
of one spectral data block, the absorbance spectrum AB. If a file consists
of several data blocks, these are separated by commas.

5: The end of the line is indicated by a semicolon.

8) Now save the macro using the Sore Macro button. Inthe Save File dia-
log, navigate to the directory you generated before and enter “Measure
1" asfilename. Click on Save.

9) Exit the Macro Editor by clicking on Exit.
10) You can display the macro using any kind of text editor (e.g. Notepad).

Listing (MEASURE 1.MTX)

VARI ABLES SECTI ON
FI LE <$ResultFile 1> = AB;

PROGRAM SECTI ON

<$Resul tFile 1> = MeasureSanple (0, {EXP="it.xpn,
XPP="C: \ OPUS_NT\ XPM }) ;

PARAMETER SECTI ON

Note that the parameter section contains no entry; this also is a specific feature
of the Measurement function.
Running the Macro

» Before you run the macro, first collect a background spectrum using
the experiment file you created to be used with the macro.

Bruker Optik GmbH OPUS-NT Programming 6-5

How to Write Macros

* Run the macro with the Run Macro command from the Macro pull-
down menu.

6.3

Task

Measure 2 — A Macro Including Data
Manipulation

The macro should acquire a spectrum and perform a baseline correction. A
peak table should be generated from the result spectrum.

We will built on the macro “Measure 17, which we wrote in chapter 6.2.

M acr o Functions

This example uses no special macro functions.

OPUS Functions

M easurement, Baseline Correction, Peak Picking

Contrary to the Measurement command, the OPUS functions responsible for the
data processing need far less parameters. We recommend to always include all
parameters, as shown in our example, into the command line.

Generating the Macro

1)

2)

3)

4)

5)

From the Macro pull-down menu, open the Macro Editor. Load
“Measure 1’ by clicking on Open Macro. Path and name are shown in
the line below the buttons.

Appending code to an existing macro is simple; just apply the OPUS
function you would like to include. Select Baseline Correction from the
Manipulation pull-down menu.

Instead of the file selection box on the first page of the dialog box, alist
appears. Click on the triangle button to open the drop-down list, and
select [<$Resul tFil e 1>: AB] from the list. The list contains all
variables declared in a macro, in this example only one, instead of file
names. Parameters are selected as usual on the second page of the dia-
log. Select Rubber Band correction.

Now click on Correct. The dialog box containing the functions’ param-
eterswill be displayed. By default, all parameter check boxes have been
selected.

After clicking OK, the function will be appended to the existing macro
code in the command window:

Basel i ne ([<$Resul tFile>: AB], {BME=2, BCO=0,

BPO=64}) ;

OPUS-NT Programming Bruker Optik GmbH

Measure 2 — A Macro Including Data Manipulation

Bazeline Comection |

Select Files | Select Method I

— File[z] to Comrect

I <SHesultFile 1>:AB k

[<SResultFile 1>:AB]

Comect Cancel Helm

Figure 26: Selecting the FILE Variable

6) From the Evaluation pull-down menu, choose Peak Picking. Similar to
step 3 select the FILE variable from the list that is displayed on the first
page. On the remaining pages define the parameters as usual, and click
on Peak Picking.

7) Again, the functions’ parameter box will open. You don’'t need to make
any changes, just click on OK to close the box. As aresult, the follow-
ing line will be appended to the macro:

PeakPi ck ([<$ResultFile 1>: AB], {NSP=9, PSM-1,

WHR=0, LXP=400. 000000, FXP=4000.000000, QP8='NO ,
QP9=0. 200000, PTR=20. 000000, QP4='NO , QP7=

0. 800000, Q@QP6="NO , @QP5=80.000000, PPM=1, QPO='NO ,
QP3=4}) ;

The result of the Peak Picking function is stored in an extra data block
(peak report). This block isautomatically added to the FILE variable:

FI LE <$ResultFile 1> = AB, AB/ Peak;

8) Save the macro by clicking on Sore Macro. Contrary to the first exam-
ple, the macro name has aready been entered in the File Name field,
because we edited an existing macro. Change the file name to
“Measure 2" and click on Save. Exit the Macro Editor.

Listing (MEASURE 2.M TX)

VARI ABLES SECTI ON
FI LE <$ResultFile 1> = AB, AB/ Peak;

PROGRAM SECTI ON

<$Resul tFil e 1> = MeasureSanpl e (0, { EXP="Defaul t. xpn ,
XPP="C:\ OPUS_NT\ XPM }) ;

Basel ine ([<$ResultFile 1>:AB], {BME=2, BCO=0,

Bruker Optik GmbH OPUS-NT Programming 67

How to Write Macros

BPO=64}) ;

PeakPi ck ([<$ResultFile 1>:AB], {NSP=9, PSM-1, WHR=0,
LXP=400. 000000, FXP=4000.000000, QP8='NO ,

@QP9=0. 200000, PTR=20. 000000, QP4="NO , QP7=0.800000,
@Q6="NO , QP5=80.000000, PPM-1, QPO="NO , QP3=4});

PARAVETER SECTI ON
Running the Macro

Upon running the macro, a spectrum will be acquired and post-acquisition data
processing is performed. The result is a baseline corrected spectrum with a
peak table attached.

6.4 Measure 3 — Repeated Data Acquisition
Using a Loop

Task

The macro “Measure 2" should be expanded to perform three concurrent sam-
ple measurements. In addition, a background spectrum should be measured
prior to the data acquisition.

M acr o Functions
StartL oop, EndLoop

If a sequence of functionsis to be repeated severa times, the problem could be
tackled by repeatedly including the code responsible for the function. However,
thereisamore elegant solution. The StartL oop and EndL oop commands define
a loop with a counter (Loop Count), that repeats the code enclosed by these
commands as often as indicated by the counter.

OPUS Functions
Measurement, Baseline Correction, Peak Picking

Only a background spectrum acquisition is added. The same conditions as for
the sample measurement apply.

Generating the Macro

1) From the Macro pull-down menu, open the Macro Editor. Load
“Measure 2 by clicking on Open Macro.

2) Selectthefirst linewith asingleleft click of the mouse. From the OPUS
Measure pull-down menu, select the Measurement command. If neces-
sary, load your experiment file and click on Collect Background. Exit

6-8 OPUS-NT Programming Bruker Optik GmbH

Measure 3 — Repeated Data Acquisition Using a Loop

the dialog box that appears next without changing any of the parameters
by clicking on OK. The following code will be appended to the macro:

Measur eRef erence (0, {EXP="Defaul t.xpm,
XPP=" C. \ OPUS_NT\ XPM });
3) Select the line as usua (one left-click with the mouse). Now move the

line to the beginning of the macro by clicking on the 1| button. Alter-

natively, double-click on the command line, and drag it to the top of the
list while holding the left mouse button down.

4) Next, we will include a command which is not part of the OPUS pull-
inserts a blank line in the command win-

dow just below thefirst line

E st Open Macro | Store Macro |

Macro: CAOPUS_MWTMMEASURE 2

Macro Lines A2 “'I NT <P
<$ResullFile 13 = MeasureSample [0, {EXP="Dsfault.xpm’, XPP="C:MIPUS_HT P,

Maseline (M esaie TR TBME=2, BCT=0 BP0 =CaT)
PeakPick l1<3ResulFile 15481 IMSP=3 PSM=1 WHR<0 LXP=400 000000, FXP=4000 000000, DPE<NO". DP9=0.200000. PTR=20.001

Figure 27: Manually Inserting a Command

5) Press on the .| button to open the Special Macro Commands dialog
box.

Special Macro Commands

[Corrmand Marne

[
GetDpuzFPath a
GetlserPath —
GetMacroPath
Getversion
CallMacio

Add Variable | R
GetdrayCount

Enter Exprazsion
FindString
Getlength
StartLoop
EndLoop

Lahel

OF. I Caticel Goto hl

Figure 28: Special Macro Commands Dialog

6) From the drop-down list choose the StartLoop command. Two addi-
tional parameter fields are displayed.

7) AsLoop Count enter “3” and “0” inthe Loop Index field. Both fieldsare
empty because no matching variables have been declared so far. Click
on OK.

StartLoop (3,0); is inserted.

Bruker Optik GmbH OPUS-NT Programming 6-9

How to Write Macros

Special Macro Commands E2
[Command Mame
IStartLoop j
| Loop Count: |3 j
| Loop Index: ID j
Add Variable |
ak. I Cancel

Figure 29: Defining StartLoop Parameters

8) Create another blank line in the command window. Call up the Special
Macro Commands dialog and choose the EndLoop command. This
command requires only the Loop Index as a parameter. The Loop Index
links the EndLoop command to the correct StartLoop command; there-
fore, enter “0”. Especially when several loops are used make sure the
correct StartL oop and EndLoop commands are linked.

9) Savethemacro as“Measure 3" and exit the Macro Editor.

Listing (MEASURE 3.M TX)

VARI ABLES SECTI ON
FI LE <$ResultFile 1> = AB, AB/ Peak;

PROGRAM SECTI ON
Measur eRef erence (0, {EXP="Defaul t.xpm,
XPP="C:\ OPUS_NT\ XPM }):
StartLoop (3, 0);
<$ResultFile 1> = MeasureSanple (O,
{EXP="Defaul t.xpni,

XPP="C: \ OPUS_NT\ XPM });
Basel ine ([<$ResultFile 1>:AB], {BME=2, BCO=0,
BPO=64}) ;
PeakPi ck ([<$ResultFile 1>:AB], {NSP=9, PSM-1l, WHR=0,
LXP=400. 000000, FXP=4000. 000000, QP8='NO ,
@QP9=0. 200000, PTR=20. 000000, QP4="NO , QP7=0.800000,
QP6="NO , QP5=80.000000, PPM=1, QPO="NO , QP3=4});
EndLoop (0);

PARAVETER SECTI ON
Running the Macro

Upon running the macro, a background spectrum will be acquired and subse-
guently three sample measurements. However, there is no pause between the
sample measurements to change or manipulate the sample. This will be part of
the next example.

6-10

OPUS-NT Programming Bruker Optik GmbH

Measure 4 — Interacting with the User

6.5 Measure 4 — Interacting with the User

Task

Modify “Measure 3" to pause between the repeated data acquisitions. Prompt
the user to insert a new sample before the next measurement.

Macro Functions
StartL oop, EndL oop, Message

The Message function displays a message in a dialog box either for a defined
time or until the user closes the dialog box.

Note: the option ON_PRINTER is not availablein OPUS-NT 2.0.

OPUS Functions
M easurement, Baseline Correction, Peak Picking

This example introduces no new OPUS functions.

Generating theMacro

1) Open the Macro Editor and load “Measure 3”.

2) Insert ablank line in the command window just below the “ StartL oop”
instruction, and open the Special Macro Commands dialog.

3) From the list, choose the Message command; quick-select by typing the
first letter “M” of the command name after opening the drop-down list.

4) Three parameters are required for the Message function. Enter “Please
insert sample.” into the text field. Don’t forget to enclose the text in sin-
gle quotes.

5) “Option” —the second parameter —isa so called keyword. Open the list
and select “ON_SCREEN", which causes the message to be displayed
on the computer screen.

6) “Time" specifies how long (in seconds) the message will be displayed.
Also, the HH:MM:SS format (hours, minutes, seconds) is accepted. If
you would like the user to confirm the message, choose NO_TIMEOUT
as keyword. The message will be displayed, until the user clicks the OK
button.

Bruker Optik GmbH OPUS-NT Programming 6-11

How to Write Macros

Special Macro Commands

Add Wariable |

o]

[Carmmand Marne

IMessage j

| Test: I'Please inzert sample.’
| Option: [ON_SCREEN

| Time: [NO_TIMEOUT

LefLefLed

Cancel

Figure 30: Defining StartLoop Parameters

7) After defining all parameters, close the dialog by clicking OK.

8) Save the macro as “Measure 4” and exit the Macro Editor. If you click
Exit without saving the file, you will be asked to save your work before
closing the Macro Editor.

Listing (MEASURE 4.MTX)

VARI ABLES SECTI ON
FI LE <$ResultFile 1> = AB, AB/ Peak;

PROGRAM SECTI ON

Measur eRef erence (0, {EXP="Defaul t.xpm,

XPP=" C:\ OPUS_NT\ XPM });

StartLoop (3, 0);

Message (' Please insert sanple.’, ON_SCREEN,
NO_TI MEQUT) ;

<$ResultFile 1> = MeasureSanple (O,

{ EXP="Def aul t.xpm,

XPP=" C:\ OPUS_NT\ XPM });

Baseline ([<$ResultFile 1>:AB], {BME=2, BCO=0,
BPO=64}) ;

PeakPi ck ([<$ResultFile 1>:AB], {NSP=9, PSM-1, WHR=0,
LXP=400. 000000, FXP=4000. 000000,

@QP8="NO , (QP9=0.200000, PTR=20.000000, QP4='NO ,
QP7=0. 800000,

QP6=" NO ,

@QP5=80. 000000, PPM=1, QPO="NO , QP3=4});

EndLoop (0);

PARAMETER SECTI ON
Running the Macro

Start the macro. After the background spectrum acquisition has finished, a mes-
sage “Please insert the sample.” will be displayed before starting each sample
measurement. The macro pauses until you confirmed the dialog by clicking
Continue.

6-12

OPUS-NT Programming Bruker Optik GmbH

Measure 5 — Variable Loop Counters

6.6 Measure 5 — Variable Loop Counters

Task

So far we used afixed Loop Counter for the command repetition. In your every
day work you might find it more suitable to let the user choose how many repe-
titions he actually needs upon launching the macro. This requires a variable
Loop Counter.

Macro Functions
StartL oop, EndL oop, Message, UserDialog

A numerical variable is used for the Loop Counter. The variable value will be
entered in adialog box.

OPUS Functions
M easurement, Baseline Correction, Peak Picking

This example introduces no new OPUS functions.

Generating theMacro
1) Open the Macro Editor and load “Measure 4”.

2) Insert ablank linein the variable window by clicking onthe *| button
on top of the variable window. Open the New/Edit Variable dialog by
clickingon ...

3) In the top section of the dialog box you specify the variable type: select
“NUMERIC".

Bruker Optik GmbH OPUS-NT Programming 6-13

How to Write Macros

New/E dit Variable |
Static
" STRING ~ BOOL " BUTTON
@ NUMERIC € FILE

k. I Cancel

Mame INumI:uer of Samples

Walue |3

¥ Update Automatically

4)
5)
6)

7)

8)

Figure 31: New/Edit Variable Dialog Box

Enter “Number of Samples’ in the Name field.
Change the default value “0” of the Value field to “3”. This defines the
starting value which will later be displayed in the dialog box.

Check the Update Automatically box. This causes the last input made
by the user to be saved and displayed during the next run of the macro.
Otherwise, the default value “3” will always be used.

Close the dialog box by clicking on OK. This inserts a new linein the
variable window:

*NUMERI C <Nunber of Sanpl es> = 3;

The asterisk indicates, that the variable will be updated automatically.

Now you have to replace the Loop Counter with the variable you just
defined. Double-click on the StartLoop command line. Open the Spe-
cial Macro Commands dialog box. Change the value of the Loop Count
field to <Number of Sanpl es> by selecting this variable from the
drop-down list. Close the dialog by clicking on OK. The code changes
to:

StartLoop (<Number of Sanples>, 0);

6-14

OPUS-NT Programming Bruker Optik GmbH

Measure 5 — Variable Loop Counters

Special Macro Commands E
[Command Mame:
ISlarlLoop j
| Loop Count: |<Mumber of 5 amples:
- |[«$RezultFile 1::AB] =
| Loop Index: <Mumber of 5 amples: ¥
Add Wariable |
ak. I Cancel

Figure 32: Defining StartLoop Parameters

Alternatively to changing the code via the Special Macro Commands
dialog, you could have manually edited the code after double-clicking
on the StartLoop line. Change the old values in parentheses after the
StartLoop (3, 0) against the variable name.

9) Next, you have to create a user dialog box. Insert a blank line in the
command window, and open the Special Macro Commands dialog.
Open the drop-down list of the Command Name field, and quick-select
the UserDialog command by typing “u”.

10) A new dialog box (shown in Figure 11) opens. Enter “Multiple Sample
Acquisition” inthe Titlefield. Leave the Option set to “STANDARD”.

11) Use the remaining fields to define the text of the user dialog box. A
drop-down list is provided for all fields. In thefirst field on the left side,
select the format that will be used to display the text in the user dialog.
Since we want the user to edit the value of the Loop Counter variable, we
select “EDIT”.

12) The drop-down list of the next field in the same row shows all variables
that are suited for the format chosen before. In our example, only <Num
ber of Sanpl es>isshown. Select this variable and exit the dialog
box by clicking on OK. This generates a new command line in the
macro.

13) Reposition the UserDialog command line to the beginning of the PRO-
GRAM SECTION. Storethe macro as“Measure5” and close the Macro
Editor.

Listing (MEASURE 5.M TX)

VARI ABLES SECTI ON
FILE <$Resul tFile 1> = AB, AB/ Peak;
*NUMERI C <Nunber of Sanpl es> = 1. 000000000000000;

PROGRAM SECTI ON

UserDialog (Multiple Sanple Acquisition, STANDARD,
EDI T: <Nunber of Sanpl es>, BLANK, BLANK,

BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK);

Bruker Optik GmbH OPUS-NT Programming 6-15

How to Write Macros

Measur eRef erence (0, {EXP="Defaul t.xpm,

XPP="C: \ OPUS_NT\ XPM });

StartLoop (<Nunber of Sanples>, 0);

Message (' Please insert sanple.’, ON_SCREEN,
NO_TI MEQUT) ;

<$Resul tFile 1> = MeasureSanple (O,

{EXP="Defaul t.xpm , XPP="C:\ OPUS_NT\ XPM });

Basel i ne ([<$ResultFile 1>:AB], {BME=2, BCO=0,
BPO=64}) ;

PeakPi ck ([<$ResultFile 1>:AB], {NSP=9, PSM-1, WHR=0,
LXP=400. 000000, FXP=4000. 000000,

@QP8="NO , (QP9=0.200000, PTR=20.000000, QP4="NO ,
QP7=0. 800000, QP6=" NO

@QP5=80. 000000, PPM=1, QPO="NO , QP3=4});

EndLoop (0);

PARAMETER SECTI ON
Running the Macro

When you start the macro, a user dialog with the title “Multiple Sample Acqui-
sition”, and a field for numerical input will be displayed. The input field is
labelled Number of Samples, i.e. the variables' name. Change its value from
“3" t0 2" and click on Continue. Subsequently, two sample measurements will
be performed. When you start the macro again, the default value of the input
field now is“2".

6.7 Load 1 - Loading and Processing a

Spectrum

Task

So far data processing was only performed on spectra acquired with the same
macro. The following examples show, how to load spectrafrom disk. Thefirst
example loads a spectrum and performs a baseline correction, followed by a
normalization.

M acr o Functions

In OPUS-0OS/2, only a special macro command was available for loading spec-
tra. Thisisalso supported by OPUS-NT for reasons of compatibility. In addti-
ion, the Load File command of OPUS-NT can be used in a macro. In the
following we will use both commands.

6-16

OPUS-NT Programming Bruker Optik GmbH

Load 1 — Loading and Processing a Spectrum

OPUS Functions
Load, Baseline Correction, Normalization

In this example the OPUS function Load File will be used.

Generating theMacro

1) Open the Macro Editor and select the Load File command from the
OPUS File pull-down menu.

2) Change to the \OPUS NT\DATA directory, and select the file
ABBOEOQ5.0. Click on Open.

3) Close the parameter dialog box without any further changes.

4) Thefollowing command line is generated:
<$ResultFile 1> = Load (0, {DAP='C.\ OPUS NT\ DATA,
DAF=" Abboe05. 0’ , | NP=" D:\ OPUS\ DEBUG METHODS' ,
| FP=" C.\ OPUS_NT\ METHODS' , | NM=" DEFAULT. TXD
| FN=' DEFAULT });
Similar to the Measurement command, anew FILE variable is generated
for the file that was loaded. However, the data block type (Spec) is dif-
ferent from the blocks of acquired spectra, and only used in combination
with macros. This block type allows to write macros, that can handle
any type of spectra.
FILE <$ResultFile 1> = Spec;

Similar to the first example, select the Baseline Correction command
and then Normalization from the OPUS Manipulate menu. Use in both
casesthe[<$Resul t Fi | e 1>: Spec] variable.

5) Savethemacroas“Load 1.

Listing (LOAD 1L.MTX)

VARI ABLES SECTI ON
FILE <$ResultFile 1> = Spec;

PROGRAM SECTI ON

<$Resul tFile 1> = Load (0, {DAP='C: \ OPUS_NT\ DATA ,
DAF=" Abboe05. 0",

I NP=" D: \ OPUS\ DEBUG METHODS' ,

| FP=" D: \ OPUS\ Rel ease\ METHCDS' ,

| NM=" DEFAULT. TXD , | FN=" DEFAULT });

Basel i ne ([<$ResultFile 1>:Spec], {BME=2, BCO=0,
BPO=64}) ;

Normal i ze ([<$ResultFile 1>:Spec], {NME=1,
NFX=4000. 000000, NLX=400. 000000, NWR=1});

PARAMETER SECTI ON

Bruker Optik GmbH OPUS-NT Programming 6-17

How to Write Macros

Running the Macro

The macro loads the file ABBOEO5.0 and subtracts a baseline. Afterwards, the
spectrum is normalized. Note that if you start the macro for a second time, the
file ABBOEO5.0 isloaded and processed again.

6.8 Load 2 — Loading and Processing

Several Spectra

Task

In the previous example only the file ABBOEQ5.0 was processed. To be ableto
process several files the file name and its path must be stored in variables. We
define\OPUS_NT\DATA asthe default directory.

M acr o Functions
GetOpusPath, UserDialog

Two STRING variables are used to store the path and file name of the spectrum.
A user dialog will be used to allow the user to enter name and path. The
GetOpusPath function is used to determine the path of the OPUS main direc-
tory, which is the extended by the string “\DATA”.

OPUS Functions
Load, Baseline Correction, Normalization

We replace the file name and path statements of the Load function against vari-
ables.

Generating the Macro

1) Open the Macro Editor and load “Load 1”.

2) Append a blank line to the variable window, and open the New/Edit
Variable dialog box.

3) Since STRING isthe default type, just enter “Path” as name in the Name
field. The Valuefield remains empty. Exit the dialog box.

4) Generate a second variable labelled “File Name”.

5) Insert ablank line to become the first line in the command window, and
open the Special Macro Commands dialog box. Select the function
GetOpusPath from the Command list. This function does not require
any parameters. The result will be returned to the STRING variable.
Choose <Pat h> from the Variable list. Close the dialog box.

6) Insert a blank line below the first line, and enter <Di rectory> =
' <Pat h>\ DATA' . Don't forget the backslash and remember to enclose

6-18

OPUS-NT Programming Bruker Optik GmbH

Load 2 — Loading and Processing Several Spectra

7)

8)

9)

the expression by single quotes.

Now, we will add a user dialog box below line 2. Repeat steps 9 to 12
from the example “Measure 5”. Thistime you will need two lines of the
format EDIT, to which you assign the variables <Fi | e Nanme> and
<Pat h>. As a result the following line should be appended to the
macro:

User Di al og (Load, STANDARD, EDI T: <Pat h>,

EDI T: <Fi | e Nane>, BLANK, BLANK, BLANK, BLANK,

BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK
BLANK) ;

Replace the file name and directory statements in the Load command
line by the variables. Double-click on thisline and then on the button at
the end of theline. Thiswill open the OPUS Load File dia og.

Load any file from the directory. The parameter dialog box will be dis-
played again, listing the path and file name as the first two entries. Click
on the topmost field in the Assign Variable column. A drop-down list
replaces the entry field; choose the variable <Pat h> from thislist.

Aszzign Macro Yariables to Function Parameters

Parameter

Parameter Hame Original Yalue Assign Yariable

¥ DAP Data File Path 'QA0PUS NTWDATA' <Path>

v DAF initial filename for load ['os?acq.t82" =File Name> =l

[INP Info Text Path 'CHOPUS NTWMETHODS'

¥ IFP Correlation Table Path 'CHOPUS NTWMETHODS'

[+ INM Info Definition Filename ['DEFAULT.TXD®

(=) oS VY TN

v IFH Info Definition Filename ['DEFAULT

o |

Cancel

Figure 33: Assigning Variable Values

10) Click on the cell below and select <Fi | e Name> as described above.

Closing the dialog box yields the following program line:

<$ResultFile 1> = Load (0, {DAP="<Path>',

DAF=' <Fi |l e Nane>', | NP='D:\ OPUS\ DEBUG METHODS',
| FP=" C:\ OPUS_NT\\ METHODS' , | NM=’ DEFAULT. TXD ,

| FN=" DEFAULT’ }) ;

11) Storethe macro as“Load 2”.

Listing (LOAD 2.MTX)

VARI ABLES SECTI ON

FILE <$ResultFile 1> = Spec;

STRI NG <Pat h> = ' C.\ OPUS_NT\ DATA' ;
STRING <Fil e Nanme> = '’ ;

Bruker Optik GmbH

OPUS-NT Programming 6-19

How to Write Macros

PROGRAM SECTI ON

User Di al og (Load, STANDARD, EDIT:<Path>, EDIT:.<File
Name>, BLANK, BLANK, BLANK,

BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK);

<$ResultFile 1> = Load (0, {DAP='<Path>', DAF="<File
Name>’ |

I NP=" D: \ OPUS\ DEBUG\ METHCDS' ,

| FP=" D: \ OPUS\ Rel ease\ METHCDS' ,

| NM=" DEFAULT. TXD' , | FN=" DEFAULT' });

Basel i ne ([<$ResultFile 1>:Spec], {BME=2, BCO=0,
BPO=64}) ;

Normal i ze ([<$ResultFile 1>:Spec], {NME=1,

NFX=4000. 000000, NLX=400. 000000, NWR=1});

PARAMETER SECTI ON

Running the Macro

A dialog will be displayed, in which you have to enter the values for both vari-
ables. Inthe field “Directory”, the path to your directory is displayed. If you
enter “GLY.0” asfile name you will see, that the macro also handles transmis-
sion spectra.

6.9 Load 3 — Multiple File Processing

Task

The previous example will be expanded to be able to load and process multiple
files.

Macro Functions
GetOpusPath, LoadFile, UserDialog, StartLoop, EndLoop

Instead of the OPUS Load File command, we will use the equivalent macro
function LoadFile. Thisfunction isableto load one or several files.

OPUS Functions
Basdline Correction, Normalization
This example introduces no new OPUS functions.

Generating the Macro

1) Open the Macro Editor and define three STRING variables <Pat h>,
<Fi | e Name> and <Fi | e>. Assign the value “C:\OPUS_NT\DATA”
to <Pat h> and “ABB*.0” to<Fi | e Name>.

6-20

OPUS-NT Programming Bruker Optik GmbH

Load 3 — Multiple File Processing

2) Append auser diadog box for <Pat h>and <Fi | e Nane>.

3) Incontrary to the OPUS Load File command, the LoadFile macro func-
tion uses a parameter combining path and file name. Therefore, we will
use the third variable <Fi | e> to combine the values of the remaining
two variables. Insert a blank line into the command window, and open
the Special Macro Commands dialog.

4) Select the Enter Expression function from the Command List. This
functions alows you to enter a variable assignment; in our example, we
want to assign a new variable value using two STRING variables.

5) Choose <Fi | e> from the Variable list. This is the variable that will
contain the result.

6) Inthe Expressionfield, select <Di r ect or y>.

7) Position the cursor in the Expression field after <Di rect ory>. Add
“\<Fi | e Nanme>" and enclose the linein single quotes.

[‘ariahle | Index [Cornrmand Marme
|<File> ﬂ |T|_|T FIEnterEHpression ﬂ
| Expresszion; |<F'ath>'\<Fi|e Mame: j
Add ariable |
ak I Cahicel
Figure 34: Assigning Variable Values Using Enter Expression
Exit the dialog box. The following line will be appended to the macro:
<File> = ’'<Pat h>\<Fi| e Name>’ ;
8) Insert a blank line into the command window and open the Special
Macro Commands dialog. Select LoadFile.
9) In case of the LoadFile macro command, you have to define a FILE

variable for the data file intended to be loaded by yourself. Open the
variable window by clicking on the Add Variable button.

10) Define a FILE variable “Result”. From the first Value list, choose the

spectrum block “AB”. Don’t change the remaining two lists. Copy the
variable to the list by clicking Add and close the dialog box to get back
to the Special Macro Commands dialog.

Bruker Optik GmbH

OPUS-NT Programming 6-21

How to Write Macros

New/E dit Variable |
Static
© STRING BOOL BUTTON
 NUMERIC & FILE

Hame IHesuIt

Value [4B ;“ =I[- =]

&dd

4B

k. I Cancel

Figure 35: Defining a FILE Variable

11) From the Variable list, select the newly generated variable
[<Resul t >: AB] . Choose <File> from the File Name field and
“WARNING” from the Option list. Thiswill add the following line to
the macro:

[<Result>: AB] = LoadFile (<File> WARN NG ;
You see that a File expression (including the data block type) can be
used asresult file in acommand line as well.

Special Macro Commands E
[‘Yariable | Index [Command Mame

[1<Resui>-28) = 1 = [LoadFie =
|

File: Mamne: |<File>

Lef L

| Optiar: ['w/ARNING

AddVariable |

Ok I Cancel

Figure 36: Defining [<Result>:AB]

12) By using wildcards (“*” or “?") for the file name, we are able to load
more than one file that match the preselection. Hence, ABB*.0 will load
ABBOEO5.0, ABBOE08.0 and ABBOE12.0. But we can state only one
variable for al files. In this case, the variable will automatically be

6-22 OPUS-NT Programming Bruker Optik GmbH

Load 3 — Multiple File Processing

expanded to an array variable, holding more that one value (in our
example files). Each value can be addressed using an index number (in
sguare brackets). The first index number is [0]. <xyz>[3] therefore
addresses the fourth value of the variable <xyz>.

13) Thereis an elegant and simple way to address the values of aFILE vari-
able array: use the StartLoop command with the variable name as Loop
Counter. Open the Special Macro Commands dialog box and select
StartL oop.

14) The[<Resul t >: AB] variable is aso included in the Loop Count list.
Select this entry and set the Loop Index to “0”.

15) Add the OPUS functions Baseline Correction and Normalization, using
the[<Resul t >: AB] variable.

16) Findly, add the EndLoop command with a Loop Index “0" as the last
line, and save the macro as“Load 3".

Listing (LOAD 3.MTX)

VARI ABLES SECTI ON

STRI NG <Pat h> = ' C:\ OPUS_NT\ DATA' ;
STRING <File Nanme> = ' ABB*. 0’ ;
STRI NG <Fi | e>
FI LE <Resul t >

AB;

PROGRAM SECTI ON

UserDi al og (Load multiple files, STANDARD,

EDI T: <Pat h>, EDI T: <Fi |l e Name>, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK);

<File> = ' <Path>\<Fi | e Name>’;

[<Result>: AB] = LoadFile (<File> WARN NG ;
StartLoop ([<Result>:AB], 0);

Basel i ne ([<Result>: AB], {BVME=2, BCO=0, BPO=64});
Normal i ze ([<Result>: AB], {NME=1, NFX=4000.000000,
NLX=400. 000000, NWR=1});

EndLoop (0);

PARAMETER SECTI ON
Running the Macro

This time we will use the Macro Debugger to test our macro.

1) From the OPUS Macro pull-down menu, select the Debug Macro com-
mand. Load the macro.

2) A dialog box containing the macros code will be displayed, thefirst line
isindicated by a small green arrow. This arrow is a pointer to indicate
the command that will be executed next.

3) Click on the Sngle Sep button. The user dialog box will be displayed.
Since you already defined valid start values you can continue by closing
the box.

Bruker Optik GmbH OPUS-NT Programming 6-23

How to Write Macros

Debug: C:AOPUS_NTALODAD 3. MTX

Macra | Yariahbles I
| Macra Lines
=71 UszerDialog [Load multiple fles, STANDARD, EDIT:<Path:, EDIT:<File Mare:, BL2
+ 2 <Filer ="<Path:h<File Hame:';
+ 3 [<Result::AB] = LoadFile [<File:, WaARNIMNG];
+ 4 StartLoop [[<Result:A8], 0);
+ 5 Baszeline ([<Resultz:AB], {BME=2. BCO=0, BFO=E4});
* B Momalize [<Result::AB] INME=1, NFx=4000.000000, MLx=400.000000, MwR=1
+ ¥ EndLoop (0]
1] | i
Type | M ame | W alle
4| | *]
Single Step Run to Breakpaint Abort Macro |

Figure 37: Debugging Load 3

4) Note that the pointer now is in line two. The window at the bottom
shows which variables have been changed by the command executed
before and their current values.

6-24 OPUS-NT Programming Bruker Optik GmbH

Load 3 — Multiple File Processing

Debug: C:ADPUS_NTALDAD 3.MTX

Macra | Y ariables I

| kacro Lines

* 1. UseDialog [Load multiple files, STANDARD, EDIT:<Path:, EDIT:<File Hame:, BL2
=2 <Filer = '<Paths'<File Mames';

= 3 [<Result=:AB] = LoadFile [<Filex, WaARNING];

* 4 StartLoop [<Result::ARB], 0);

= 5 Baszeline [[<Result-:AB), {BME=Z, BCO=0, BPO=64}];

= B Momalize [[<Result-AB], iINME=1, NFx=4000.000000, NL+=400.000000, NwR=1
* ¥ EndLoop [0);

ol | i
Type | M ame | Y alue |

1: STRING Path CAOPUS_MTWDATA

2 STRING File Mame ABB=0

[0 ABB=D
Single Step I Fun to Breakpoint Abort Macro

Figure 38: Debugging Load 3 — Single Step Mode

5) A complete list of the macros' variables is given on the Variables page
of the Debugger, including the variable type, the name and current
value. Asyou can see, <Fi | e> and <Resul t > have no value assigned
at this point.

Bruker Optik GmbH OPUS-NT Programming 6-25

How to Write Macros

Debug: C:AOPUS_NTALODAD 3. MTX

bMacro Wariables |

Type | M arme | W allie |
[1: STRING Directary CAOPUS_HTADATA,

2 STRING | FileName ABB-0

Z STRING File
4: FILE Rezult

Figure 39: Debugging Load 3 — Variables Page

6) Return to the Macro page and execute the next command. The result is
shown in the window at the bottom; <Fi | e> now contains the result of
the combination of both STRING variables.

7) The next step will execute the LoadFile function. All three spectra will
be loaded, the variable <Resul t > holds three different files. The first
fileislisted twice for reasons that will be explained later.

8) The next step, StartLoop does not seem to perform any action. How-
ever, the command initiates the triple repetition of the following com-
mands. You can watch this when you continue to step through the
macro.

6.10 Load 4 — Multiple File Processing

Task

This example shows you an aternative route to load and process several files.
This time we will make use of the OPUS Load File command.

6-26 OPUS-NT Programming Bruker Optik GmbH

Load 4 — Multiple File Processing

M acr o Functions

GetArrayCount, UserDialog, StartL oop, EndL oop, ScanPath

ScanPath reads the content of adirectory. Y ou haveto specify adirectory and a
file name using wildcards (e.g. C:\OPUS NT\DATA\ABB*.0). All matching
file names are stored as array in a STRING variable.

GetArrayCount evaluates the number of elements stored in an array variable,
which then can be used as Loop Counter to address these elements.

OPUS Functions

Load, Baseline Correction, Normalization

This example introduces no new OPUS functions.

Generating the Macro

1)

2)

3)

4)

5)

6)

7)

Open the Macro Editor and define the following STRING variables:
STRING <File List> ="";

STRI NG <Pat h> = ' C:\ OPUS_NT\ DATA' ;

STRI NG <Nanme> =’ ABB*. 0’ ;

NUMERI C <Count > 0;

NUMERI C <I ndex> 0;

Create a user dialog box for <Pat h> and <Nanme> to be able to test the
macro under different prerequisites.

Add ablank line, call up the Special Macro Commands dialog box, and
select the ScanPath function from the Commands list. This command
requires avariable to store its result, choosethe <Fi | e Li st > variable
from the Varible list.

This function uses only the file name and path where to look for the
requested file as a parameter. Select <Pat h> from the Variable list and
add “\ <Nanme>". Exit the dialog box.

Add ablank line and insert the GetArrayCount command,; this command
evaluates, how many entries are stored in<Fi l e |i st>. The number
of entrieswill be stored in <Count >.

<Count> = GetArrayCount (<File list>);

<Count > will now be used to define the number of cycles of a loop.
Insert a StartL oop command with <Count> as Loop Counter and a Loop
Index of 0.

From the OPUS pull-down menu select the Load File command. Select
any file regardless of the directory because in the following we will
change the file name and path against variables. Click on Load. The
dialog box for parameter assignment will open automaticaly. Assign
<Pat h> to the first parameter “DAP’, and <Fi | e Li st > to the sec-
ond parameter (DAF). Since <Fil e List> isan array variable you
also have to specify an index number. In our example we use
[<I ndex>] toread the completefilelist. Theline now reads

Bruker Optik GmbH

OPUS-NT Programming 6-27

How to Write Macros

<File list>[<lndex>].

8) Inthe next ling, <l ndex> must increase by 1 to read the next list ele-
ment during the next cycle of the loop. Add a blank line to the macro
and enter:

<I ndex> = <| ndex> + 1,
9) Add the OPUS Baseline Correction function.

10) Add the EndLoop command.
11) Savethemacroas“Load 4".

Listing (LOAD 4.MTX)

VARI ABLES SECTI ON

STRING <File List> ="";

STRI NG <Pat h> = * C:\ OPUS_NT\ DATA' ;
STRI NG <Nanme> = ' ABB*. 0’ ;

NUMERI C <Count > =
NUMERI C <l ndex> =
FILE <$Resul tFile
PROGRAM SECTI ON
UserDi al og (Load multiple files, STANDARD,

EDI T: <Pat h>, EDI T: <Nane>, BLANK,

BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK,

BLANK) ;

<Fil e List> = ScanPat h (<Pat h>\ <Nanme>);

<Count> = CetArrayCount (<File List>);

StartLoop (<Count>, 0);

<$Resul tFile 1> = Load (0, {DAP='<Path>", DAF=
<Fil e List>[<Index>]",

| NP=" D: \ OPUS\ DEBUG\ METHCDS'

| FP="D: \ OPUS\ Rel ease\ METHCDS' ,

| NM=" DEFAULT. TXD' , | FN=" DEFAULT' });

<I ndex> = <| ndex>+1;

Basel ine ([<$ResultFile 1>:Spec], {BME=2, BCO=0,
BPO=64}) ;

EndLoop (0);

0;
0;
1> = Spec;

PARAMETER SECTI ON

Running the Macro

Asin the last example, we use the Macro Debugger to execute the macro.

1) After the user dialog box ScanPath is executed. Note that <Fil e
Li st > now contains three file names.

2) As expected, the GetArrayCount function returns a value of 3 to
<Count >.

3) Inlineb, thefirst file of thelist isloaded.
4) Inline6, the value of <I ndex> isincreased by 1 (current valueis 1).
5) Inline7,theloaded fileis baseline corrected.

6-28

OPUS-NT Programming Bruker Optik GmbH

Manipulation 1 — Processing of Files Already Loaded

6) We won't execute the following two loop cycles step by step. There-
fore, by double-clicking on the line number of line 7 (Baseline), a break
point will be set, indicated by a small stop sign.

7) Now click on Run to Breakpoint. Asyou can see, the second spectrum
will be loaded; during this operation the Debugger is grayed. Also,
<l ndex> now has avalue of 2.

8) Repeat the Run to Breakpoint cycle. The last file is loaded and
<l ndex> now hasavalue of 3.

9) A third click on Run to Breakpoint performs the baseline correction and
ends the macro.

The main difference to the last example is, that the macro command LoadFile
loads all three spectra before processing them in the loop. In this example, the
fileswill be loaded subsequently, while the macro goes through the loop. In the
case of only three files, this may seem of minor importance. However, if you
process a great number of files you will notice, that loading the files turns out to
be quite time consuming. In thiscase, the latter method is the method of choice.

6.11 Manipulation 1 — Processing of Files
Already Loaded

Task

So far all example macros either loaded or acquired the data prior to data pro-
cessing. However, there is a multitude of applications in which you may want
to process data that was already loaded. In this example, we will demonstrate a
general route to this type of data processing.

M acr o Functions

This example introduces no new macro functions.

OPUS Functions
Baseline Correction

This example introduces no new OPUS functions.

Generating the Macro

1) DefineaFILE variable <Fi | e> with an absorption data block.

2) Select the Baseline Correction function from the OPUS pull-down menu
and choose the <Fi | e> variable for processing.

3) Savethemacro as“Manipulation 1”.

Bruker Optik GmbH OPUS-NT Programming 6-29

How to Write Macros

Listing (MANIPULATION 1.MTX)

VARI ABLES SECTI ON
FILE <File> = AB;

PROGRAM SECTI ON
Basel ine ([<File>: AB], {BMe=2, BCO=0, BPO=64});

PARAMETER SECTI ON

Running the Macro

1) Load an absorption spectrum (e.g. ABBOEQ05.0) and start the macro.

2) A fileselection box will open. Select the file you loaded before. Click-
ing on Continue will perform a baseline correction.

Select File[s] for Macro |

Chooze Files for Macm |

Select File[z] far: File

[A ae | "C:MOPUS_WT4ABBOEDS.O" 1

Continue Canicel

HEelm

Figure 40: File Selection Box for Macros

6.12 Manipulation 2 — Processing of Files
Already Loaded

Task

The previous macro will now be expanded by a user dialog box, from which
you can select the spectrum you want to process.

6-30 OPUS-NT Programming Bruker Optik GmbH

Manipulation 2a — Saving Processed Files

M acr o Functions
UserDialog

This example introduces no new macro functions.

OPUS Functions
Basdline Correction

This example introduces no new OPUS functions.

Generating the Macro

1) Load“Manipulation 1.

2) Append aUserDialog command line to the macro, selecting FILE asthe
variabletype and[<Fi | e>: AB] as thevariable.

3) Movethislineto the top of the macro and save it as “Manipulation 2”.

Listing (MANIPULATION 2MTX)

VARI ABLES SECTI ON
FILE <File> = AB;

PROGRAM SECTI ON

UserDi al og (0, STANDARD, FILE:[<File>:AB], BLANK
BLANK, BLANK, BLANK, BLANK, BLANK,

BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);
Basel ine ([<File>: AB], {BME=2, BCO=0, BPO=64});

PARAMVETER SECTI ON
Running the Macro

In contrary to “Manipulation 1", a user dialog is now displayed instead of the
file selection box.

6.13 Manipulation 2a — Saving Processed
Files

Task

OPUS-NT manipulates copies instead of the original file during data process-
ing. Therefore, the result of a data manipulation has to be stored explicitly. We
will demonstrate in this example, how files can be saved using a macro. In
addition, we will use the OPUS Unload File command, which is used to reduce
the numbers of files loaded.

Bruker Optik GmbH OPUS-NT Programming 6-31

How to Write Macros

M acr o Functions
UserDialog

This example introduces no new macro functions.

OPUS Functions
Baseline Correction, Save As, Save, Unload

We will make use of both Save and Save As commands to store the data. After-
wards the file will be unloaded.

Generating the Macro

1) Load“Manipulation 2”.

2) Select Save File As from the OPUS File pull-down menu. Use
[<Fi | e>: AB] as the file to be saved and enter “Macrotest.0” as file
name. With the help of the Change Path button, navigate to the
“OPUS\WORK?” subdirectory.

3) Ensurethat on the Mode page the following options are selected:
« OPUSformat
« SaveAll
« Remove All Copies
Close the dialog box by clicking on Save.

4) No changes are needed concerning the parameters; exit the parameter
dialog box.

5) Select the Save function from the OPUS pull-down menu. Thisfunction
replaces the original file, therefore you only have to select the file vari-
able. Here you also don’'t need to change any parameters.

6) Select Unload File from the OPUS File pull-down menu. Again, you
only have to select the file variable.

7) Savethe macro as“Manipulation 2a”.

Listing (MANIPULATION 2a.MTX)

VARI ABLES SECTI ON
FILE <File> = AB;

PROGRAM SECTI ON

UserDi al og (0, STANDARD, FILE:[<File>: AB], BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK,

BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);
Basel ine ([<File>: AB], {BME=2, BCO=0, BPO=64});

SaveAs ([<File>: AB], {DAP="C.\OPUS NT\WORK\', OEX="1",
SAN=" Macrotest. 0, COF=18,

| NP=" D: \ OPUS\ DEBUG\ METHODS'

| FP=" D: \ OPUS\ Rel ease\ METHODS' ,

| NM=" DEFAULT. TXD , | FN=" DEFAULT });

6-32

OPUS-NT Programming Bruker Optik GmbH

Manipulation 3 — Processing of Multiple Files Already Loaded

Save ([<File>:AB], {DAP='C:\OPUS_NT\DATA', CEX='1',
SAN=' cal cul . 0,

COF=146,

| NP=" D: \ OPUS\ DEBUG\ METHODS'

| FP=" D: \ OPUS\ Rel ease\ METHODS' ,

| NM=" DEFAULT. TXD , | FN=" DEFAULT });

Unl oad ([<File>:AB], {});

PARAMETER SECTI ON

Running the Macro

Asinthe last example, load afilefirst before starting the macro. Select thisfile
in the user dialog and click on Continue. Y ou get aglimpse of the baseline-cor-
rected spectrum before the file is unloaded again. However, if you now open
the file you will see that it has been baseline-corrected. Also, check the file
“Macrotest.0” from the “WORK” directory; both files must be identical.

6.14 Manipulation 3 — Processing of Multiple
Files Already Loaded

Task

If you try to process more than one spectrum at a time with the previous exam-
ple by dropping several files in the file selection field, you will note that only
the last spectrum of the file list will be processed. In the following macro we
will show how to handle more than onefile.

Macro Functions
UserDialog, StartLoop, EndLoop

We use aloop to repeatedly process an array of files. Aswe have seenin“Load
3’ the StartL oop function is able to directly use an array as a Loop Counter.

OPUS Functions
Basdline Correction

This example introduces no new OPUS functions.

Generating the Macro

1) Load“Manipulation 2.

2) Insert a StartLoop command using <Fi | e> as Loop Counter and aL oop
Index of “0” just below the user dialog command.

3) Append an EndLoop command to the macro and save it as “Manipulate
3.

Bruker Optik GmbH OPUS-NT Programming 6-33

How to Write Macros

Listing (MANIPULATION 3.MTX)

VARI ABLES SECTI ON

FILE <File> = AB;

PROGRAM SECTI ON

UserDi al og (0, STANDARD, FILE:[<File>:AB], BLANK
BLANK, BLANK, BLANK, BLANK, BLANK,

BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);
StartLoop ([<File>:AB], 0);

Basel ine ([<File>: AB], {BME=2, BCO=0, BPO=64});
EndLoop (0);

PARAVETER SECTI ON
Running the Macro

Load severa absorption spectraand run the macro. Select al spectrain the user
dialog and click on Continue. All selected spectrawill be baseline-corrected.

6.15 Manipulation 4 — Multiple File
Processing Using Variable Parameters

Task

We expand the last macro to perform a peak pick on the baseline-corrected

spectrum. The frequency limits and the peak sensitivity should be kept vari-
able.

Macro Functions
UserDialog, StartL oop, EndLoop

This example introduces no new macro functions.

OPUS Functions
Baseline Correction, Peak Picking

This example introduces no new OPUS functions.

Generating the Macro

1) Load“Manipulation 3".

2) Add three numerical variables:
+ <x-Start Frequency> with avalue of “1000”
« <x-End Frequency> withavalue of “500”
e <Sensitivity>withavaueof “10”

6-34 OPUS-NT Programming Bruker Optik GmbH

Manipulation 4 — Multiple File Processing Using Variable Parameters

3) Select the “Baseline” command line and choose Peak Picking from the
OPUS Evaluate pull-down menu. Select <Fi | e> and make sure that
Use File Limits on the Frequency Range page is not selected.

4) After clicking on Peak pick, the parameter dialog opens. Assign the fol-
lowing variables:

e <x-Start Frequency>to“FXP’
e <x-End Frequency>to“LXP
* <Sensitivity>to“PITR’

5) Edit thisuser dialog box command in the first line. Add three Edit lines
for the numerical parameters.

6) Savethe macro as“Manipulation 4”.

Listing (MANIPULATION 4.MTX)
VARI ABLES SECTI ON

FILE <Fi |l e> = AB, AB/ Peak;

NUMERI C <x-Start Frequency> = 1000;
NUMERI C <x- End Frequency> = 500;
NUMERI C <Sensitivity> = 10;

PROGRAM SECTI ON

UserDi al og (0, STANDARD, FILE:[<File>:AB], ED T: <x-
Start Frequency>, EDIT:<x-End Frequency>,

EDI T: <Sensi tivity>, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK,

BLANK, BLANK) ;

StartLoop ([<File>: AB], 0);

Baseline ([<File>: AB], {BME=2, BCO=0, BPO=64});
PeakPi ck ([<File>:AB], {NSP=9, PSMF1, WHR=0, LXP=<x-
End Frequency>, FXP=<x-Start Frequency>,

QP8="NO , (QP9=0.200000, PTR=<Sensitivity> QP4="NO ,
QP7=0. 800000, QP6=" NO ,

QP5=80. 000000, PPM=1, QPO="NO , QP3=4});

EndLoop (0);

PARAMETER SECTI ON
Running the Macro

The user dialog showsthefilelist asbefore. First slelect thefile to be processed
and then switch to the Parameter page. Asyou continue, you will see from the
peak labels on thee display that the specified limits have been used.

Bruker Optik GmbH OPUS-NT Programming 6-35

How to Write Macros

6.16 Average 1 — Averaging Spectra

Task

While most OPUS functions can be integrated into macros without any prob-
lems some functions require specia consideration. One of these functionsisthe
Averaging function from the OPUS Manipulation pull-down menu which we
will use in the following two examples.

Usually, an OPUS function processes only one file at atime which isthe reason
why these functions must be enclosed by a loop if several files should be pro-
cessed. The average function uses several files at once to calculate an average
spectrum.

Macro Functions
UserDialog, StartLoop, EndLoop

This example introduces no new macro functions.

OPUS Functions
Average

The average function uses several files at once to cal culate an average spectrum,
which is stored in anew file. To include this function in a macro, we make use
of the fact that an existing average spectrum can be updated.

Generating the Macro

1) Open the Macro Editor and define two FILE variables <Fi rst Fil e>
and <Next Fil e>, each of them having an absorption data block
assigned.

2) Sart by generating a user dialog box, in which you include these vari-
ables.

3) Now choose the Averaging function from the OPUS Manipulation pull-
down menu. Assign[<First File>: AB] as the spectrum used for
averaging and set the following parameters:

« Don't select Update Average Spectrum

+ Select Weighting with Number of Scans

« Don't select Create/lUpdate Sandard Deviation Spectrum
« Don't select Compute Average Report

6-36 OPUS-NT Programming Bruker Optik GmbH

Average 1 — Averaging Spectra

Averaging E3

Select Files I

— Filez to Awerage

Ml
o

|[<First File>:AB] =]

& Select by Symbal
" Select by Mame

[Update &+, Spectum
W weighting with Mo of Scans

[" Create / Update Std-Dev S pectrum

[T Compute &v. Feport Feport Methad,.. |

ALuwerage Cancel | el

4)

5)

6)

7)

Figure 41: Averaging Dialog Box

These settings create a new file (the corresponding variable [<$Resul t

File 1>:Spec] is automatically created) containing the average
spectrum of the selected file, i.e. only a copy. Click on Average and
confirm the parameter dialog box by clicking the OK button.

For the remaining files we need aloop with <Next Fi | es>, acting as
Loop Counter:
StartLoop ([<Next Files>:AB], 0);

Choose the Averaging once more and select this time <Next Fi | es>
as the spectrum to be averaged.

If you select the Update Average Spectrum parameter, you can pick the
average spectrum created during the first run ([<$Result File
1>: Spec]) fromthelist. Thistimetheresult isnot storedinanew file,
but included in the average calculation during every cycle of the loop.

Bruker Optik GmbH

OPUS-NT Programming 6-37

How to Write Macros

Averaging E3 |

Select Files |

e
Laa ¥l

— Files to Average

|[<First File>:AB] =

i+ Select by Symbal
" Select by Mame

¥ Update &v. Spectum I[(SRESUltFiIE 1>:5pec] j
I | eighting with Wiz ot Scans
I~ Create ¢ Update Std-Dey Spectium

I™ | Eompute ds. Hepor Freport Methad,. |

Average Cancel | HElR

Figure 42: Averaging Dialog Box — Update Average Spectrum

8) Close theloop by appending the EndLoop command and save the macro
as“Average 1”.

Listing (AVERAGE 1.MTX)

VARI ABLES SECTI ON

FILE <First File> AB;

FI LE <Next Fil es> AB;

FILE <$ResultFile 1> = Spec;

PROGRAM SECTI ON

User Di al og (Average, STANDARD, FILE:[<First File>: AB],
FI LE: [<Next Fil es>: AB],

BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK,

BLANK, BLANK);

<$ResultFile 1> = Average ([<First File>: AB], 0, O,
{QA0=1, QA2=0, QAE="NO , QAF='NO,

QAL=" LIS, QAMF' D:\ OPUS\ Debug\’, QAN="*.*’' QAC=0,
QFB="", QFC="'1);

StartLoop ([<Next Files>:AB], 0);

Average ([<Next Files>: AB], [<$ResultFile 1>: Spec], O,
{QA0=1, QA2=0, QAE="NO , QAF='YES ,

QAL=" LIS, QAMF' D:\ OPUS\ Debug\’, QAN="*.*' QAC=0,
QFB="", QFC="'1);

EndLoop (0);

PARAMETER SECTI ON

6-38

OPUS-NT Programming Bruker Optik GmbH

Average 2 — Averaging Spectra Including the Standard Deviation

Running the Macro

Start by loading three absorption spectra. Open the Macro Debugger and run
the macro.

1

2)

3)

4)

6.17

Task

After stepping through thefirst line, the user dialog is displayed, consist-
ing of two input fields. Enter the first spectrum into the upper field
(assigned to <Fi r st Fi | e>), and the remaining two spectra into the
lower field. Click on Continue.

The result is a new spectrum identical to the spectrum selected first.
Continue for two more steps.

After the next averaging operation the average spectrum is the average
of the first and second spectrum.

Click on Run to Breakpoint to end the macro. Verify the result by manu-
aly averaging the three spectra, using the OPUS Averaging function.
Compare the result to the file calculated by the macro. Both files should
be identical.

Average 2 — Averaging Spectra
Including the Standard Deviation

In addition to the calculation of an average spectrum, it is possible to generate a
standard deviation spectrum and store it in a separate file. Similar to the aver-
age spectrum, it is possible to also update the standard deviation spectrum.

M acr o Functions

StartL oop, EndL oop

This example introduces no new macro functions.

OPUS Functions

Average

This example introduces no new OPUS functions.

Generating the Macro

1)
2)

Load “Average 1”.

Edit the second line (the Average command) and select the Create/
Update Sandard Deviation check box. Exit the Average dialog box and
the parameter dialog box. This only changes the parameter of the Aver-
age command in the macro.

Bruker Optik GmbH

OPUS-NT Programming 6-39

How to Write Macros

3) However, as a consequence of the parameter change not only one but
two files will be generated by the macro. The [<$ResultFile
1>: Spec] variable will contain to files, the average spectrum and the
standard deviation spectrum.

4) Therefore, we aso have to edit the Average command line within the
loop. In the Average dialog box, you must add an index to the file
selected for the average result: [<$Resul t Fi | e 1>: Spec]. In addi-
tion, check the Update Sandard Deviation box, select [<$Resul t -
File 1>:Spec] as the result file and add an array index of “1”
manually.

[<$Resul tFile 1>[1]: Spec]
5) Closethefunctions dialog box and save the macro as*“Average 2”.

Listing (AVERAGE 2.M TX)

VARI ABLES SECTI ON

FILE <First File> AB;

FI LE <Next Fil es> AB;

FILE <$ResultFile 1> = Spec;

PROGRAM SECTI ON

User Di al og (Average, STANDARD, FILE:[<First File>: AB],
FI LE: [<Next Fil es>: AB],

BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK,

BLANK, BLANK) ;

<$ResultFile 1> = Average ([<First File>:AB], 0, O,
{QA0=1, QA2=0, QAE="YES , QAF="NO ,

QAL=" LIS, QAMF' D:\ OPUS\ Debug\’, QAN="*.*’' QAC=O0,
QFB="", QFC="'1);

StartLoop ([<Next Files>: AB], 0);

Average ([<Next Files>:Spec], [<$ResultFile

1>[0] : Spec], [<$ResultFile 1>[1]: Spec], {QA0=1,
QA2=0, QAE="YES' , QAF="YES', QAL='LIS ,

QAME’ D: \ OPUS\ Debug\’, QAN="*.*’' QAC=O0,

QFB="", QFC="'});

EndLoop (0);

PARAMETER SECTI ON
Running the Macro

Start the macro and choose the same files as for the last example. In addition to
the average spectrum, a standard deviation spectrum is calcul ated.

6-40 OPUS-NT Programming Bruker Optik GmbH

Parameter 1 — Reading Out Spectrum Parameters

6.18 Parameter 1 — Reading Out Spectrum
Parameters

Task

Accessing parameters and data of a spectrum file is acommon task. In the fol-
lowing we will use macros to read out data from a spectrum file. In our first
example we read the sample name information from afile, add a charge number
and write the result to thefile.

M acr o Functions
GetParameter, UserDialog,

To read information from an OPUS file we use the GetParameter command,
which returns the parameter in a STRING variable. We use EnterExpression to
merge two text variables and plain text.

OPUS Functions
Edit Parameter

Only a few parameters of an OPUS file can be edited, due to security reasons.
For editing the parameters, the Edit Parameter function from the OPUS Edit
pull-down menu is available. However, this functions always saves the com-
plete parameter set from the OPUS file. Therefore, we also have to read the
complete parameter set, regardless of the number of parameters we want to edit.

Generating the Macro

1) Define a FILE variable named <Fi | e> and assign it an absorption
block. Definetwo text variables<Sanpl e Nanme> and <Char ge Num
ber >; you don’t need to assign any valuesto the variables.

2) Create a user dialog box with the variables <Fi | e> (type FILE) and
<Char geChar ge Nunber > (type EDIT).

3) Open the Special Macro Commands dialog box and select the GetPa-
rameter command from the Commands list. Select <Sanpl e Nane>
from the Variable list and enter “0” asindex. We will use this variable
also for the remaining OPUS parameters. Select the variable <Fi | e>
from the File list for the first argument. “SNM” addresses the sample
name; choose it from the parameter list of the second argument. After
closing the dialog box the following line will be appended to the macro:

<Sanpl e Nane>[0] = CetParaneter ([<File>: AB], SNM;

4) We have to write similar statements for the remaining parameters sam-
ple form (“SFM”), operator name (“CNM”) and sample number
(“RSN”). Pay special attention to define the correct index numbers.

<Sanpl e Name>[1] = Get Paraneter ([<File>:AB], SFM;

Bruker Optik GmbH OPUS-NT Programming 641

How to Write Macros

<Sanpl e Nane>[2]
<Sanpl e Nanme>[3]

Get Parameter ([<File>:AB], CNM;
Get Paraneter ([<File>:AB], RSN);

5) In the next line we change the sample name:
<Sanpl e Nanme>[0] = ’<Sanpl e Nanme>[0] Charge:
<Char ge Number>";
Either append this line manually or use the Special Macro Commands
dialog and EnterExpression. Make sure to include the correct index
number. Asyou can see you can combine variables and text in this type
of statement.

6) Select the Edit Parameter command from the OPUS Edit pull-down
menu. Choose [<Fi | e>: AB] from the Select File field and leave the
remaining fields blank. Click on Change and assign the variablesin the
parameter dialog that appears next.

7) Savethe macro as*Parameter 1”.

Listing (PARAMETER 1LMTX)

VARI ABLES SECTI ON

STRI NG <Sanpl e Name> = '’
STRI NG <Charge Number> = '’ ;
FILE <File> = AB;

PROGRAM SECTI ON
UserDi al og (0, STANDARD, FILE:[<File>: AB],

EDI T: <Char ge Nunber >, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK);
<Sanpl e Nane>[0]
<Sanpl e Name>[1]
<Sanpl e Name>[2]

Get Paraneter ([<File> AB], SNM;
Cet Paraneter ([<File>:AB], SFM;
Cet Paraneter ([<File>:AB], CNM;
<Sanmpl e Name>[3] Cet Paraneter ([<File>:AB], RSN);
<Sanpl e Nane>[0] ' <Sanpl e Nane>[0]

Charge: <Charge Nunber>’;

ParaneterEdi tor ([<File>: AB], {CNME' <Sanpl e Name>[2] ',
SNVE’ <Sampl e Name>[0] ',

SFME’ <Sanpl e Name>[1]’, RSN=<Sanpl e Nane>[3], XTX=',
YTX="", ZTX="",

XAF=1. 000000, YAF=1.000000, ZAF=1.000000});

PARAMETER SECTI ON

Running the Macro

In the OPUS Browser load afile and check its sample parameters by placing the
cursor on the sample parameters. A small frame appears, listing the values of
the datablock. Start the macro, select the file you loaded and enter any text you
like as charge number. Click on Continue and compare the parameter with its
old value.

OPUS-NT Programming Bruker Optik GmbH

Parameter 2 — Generating Info Blocks

6.19 Parameter 2 — Generating Info Blocks

Task

If you ever created you own library you know that the files you want to include
must have an information block. In genera you probably stated the sample
name and the preparation method during the sample measurement. We can
expand the last macro and have it create an info block in addition.

M acr o Functions
GetParameter, UserDiaog,

This example introduces no new macro functions.

OPUS Functions
Edit Parameter, Information Input

We will use the Information Input function from the OPUS Edit pull-down
menu to append an information block to a spectrum (assuming that the spectrum
does not already include one).

Generating the Macro

1) Load“Parameter 1”.

2) Select the Information Input function from the OPUS Edit pull-down
menul.

3) Select [<Fil e>: AB]. The “DEFAULT.TXT” mask should be loaded
by now. If this is not the case click on Load Text Mask and load
“DEFAULT.TXT” from the*OPUS\METHODS’ directory.

4) Enter the variablesin the text fields:
« inthe Compound Name field: <Sanpl e Nane>[0]
 inthe Sample Preparation field: <Sanpl e Nanme>[1]
+ inthe Charge Number field: <Char ge Nunber >

Bruker Optik GmbH OPUS-NT Programming 643

How to Write Macros

Information Input

1-11 | 25-12]
|[<File>:AB) - Load Test Mask
|
Reztare Onginal
[~ Mew File .

Text Definition: IE:'\Dpua MTYETHODSADEFALLT. TD

Compound Name|<Sample Mame:[0]

I olecular Fu:urmulal

h alecular Weightl

CAS Regiztry Numl:uerl

helting F'u:uintl

Boiling Paint

Sample PrepalatiDnI<Sample Mame:[1]

Sample II!uantityl

Manu[acturerl

Heferencel

Charge Numl:uer|<|:harge Murnber:

Add Information | Cancel Helq

Figure 43: Information Input Dialog Box

5) If you prefer to enter these parameters in the parameter dialog box, you
must enter a random character in the fields of the Information Input
dialog you want to access. Click on Add Information to switch to the

parameter dialog box and edit the entries.

6) If necessary, enter the variables in the fourth column. Keep in mind, that
<Sanpl e Name> isan array variable for which you have to specify an

index value.

Aszzign Macro Yanables to Function Parameters

Parameter Parameter Hame Original Yalue A==ign Variable
1 v INP Info Text Path 'CHOPUS NT"METHODS®
2 v INM Info Definition Filename |'‘DEFAULT.TXD"
3 ¥ IFN Info Definition Filename |['DEFAULT'
4 v 101 < Sample Name=[0]' <Sample Name>
5 v 107 <Sample Name:=[1]' <Sample Name>
B 111 ‘sCharye Number>' < Charge Humber>
7 v T01 TEXT:Compound Name®
g v T0Z2 TEXT:Molecular Formula®
9 v T03 TEXT:Molecular Weight'
10 v TD4 TEXT:CAS Number'
1‘1| = Tn& TEYT-Nrinin' |

Cancel |

.

Figure 44: Parameters of the Infolnput command

644 OPUS-NT Programming Bruker Optik GmbH

Parameter 2 — Generating Info Blocks

7) Savethe macro as“Parameter 2".

Listing (PARAMETER 2MTX)

VARI ABLES SECTI ON

STRI NG <Sanpl e Name> = '’ ;
STRI NG <Charge Number> = '’ ;
FILE <File> = AB, Info;

PROGRAM SECTI ON

UserDi al og (0, STANDARD, FILE:[<File>: AB],

EDI T: <Char ge Nunber >, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK);
<Sanpl e Name>[0]
<Sanpl e Name>[1]
<Sanpl e Nane>[2]
<Sanpl e Nane>[3]
<Sanpl e Nane>[0]
Nunber >’ ;
ParameterEditor ([<File>: AB], {CNMF' <Sanpl e Name>[2],
SNVE’ <Sampl e Name>[0] ',

SFMF’ <Sanpl e Name>[1]’', RSN=<Sanple Name>[3], XTX="',
YTX="", ZTX=",

XAF=1. 000000, YAF=1.000000, ZAF=1.000000});

I nfol nput ([<File>: AB], {INP="D:\OPUS\ Debug\ Met hods’ ,
| NM=" DEFAULT. TXD , | FN=" DEFAULT

| 01=" <Sanpl e Nanme>[0]', 107= <Sanple Nane>[1]’,

| 11=" <Char ge Nunber>’,

TO01=" TEXT: Conpound Name’, T02=" TEXT: Mol ecul ar For -

nmul a’, TO03=" TEXT: Mol ecul ar Wi ght’,

TO4=" TEXT: CAS Nunber’, TO5=" TEXT:Origin’,

TO6=" TEXT: Boi | i ng Point’,

TO7=" TEXT: Sanpl e Techni que’, TO08=' TEXT: Wi ght ',

T09=" TEXT: Manuf acturer’,

T10=" TEXT: Ref erence’, T11=' TEXT: Charge Nunber’,

T12=" TEXT: Corment ' }) ;

Cet Paraneter ([<File>:AB], SNM;
Cet Paraneter ([<File>:AB], SFM;
Get Paraneter ([<File> AB], CNM;
Get Paraneter ([<File>: AB], RSN);
' <Sanpl e Nanme>[0] Charge: <Charge

PARAMETER SECTI ON

Running the Macro

The macro generates a new information block. Open areport window and have
the information block displayed.

Bruker Optik GmbH OPUS-NT Programming 6-45

How to Write Macros

6.20 Parameter 3 — Replacing Info Block
Entries

Task

The last macro always generated a new information block or replaced an exist-
ing information block. Now we will only change one or a few entries in an
existing block, in our example the compound name.

M acr o Functions

This example introduces no new macro functions.

OPUS Functions

Information Input

This example introduces no new OPUS functions.

Generating the Macro

1) DefineaFILE variable <Fi | e> with an AB data block associated and a
text variable <Sanpl e Nanme> with “New Sample Name” as initia
value.

2) Open the Information Input dialog box and select <Fi | e>. Load the
“DEFAULT.TXD” mask if necessary and enter <Sanpl e Nanme>. Exit
this dialog box as well as the parameter dialog box without any further
changes.

3) Add “IRM ="R’” in the parameter section of the Infolnput command
line. The parameter section isthe part enclosed in braces:

I nfol nput ([<File> AB], {IRW R,
INP="C\OPUS........
4) Savethe macro as“Parameter 3”.

Listing (PARAMETER 3.MTX)

VARI ABLES SECTI ON
FILE <File> = AB, Info;
STRI NG <Sanpl e Nane> = ' New Sanpl e Name’;

PROGRAM SECTI ON

I nfolnput ([<File> AB], {IRMF R,

| NP=" C: \ OPUS_NT\ METHODS' , | NM=’ DEFAULT. TXD ,

| FN=" DEFAULT , 101=" <Sanpl e Nanme>", T01=" TEXT: Conpound
Nanme’ , TO2=" TEXT: Mbl ecul ar Fornul a’, TO3=" TEXT: Mbl ecu-
| ar Weight’,

TO4=" TEXT: CAS Nunber’, TO5=" TEXT:Origin’,

TO6=" TEXT: Boi | i ng Point’,

TO7=" TEXT: Sanpl e Techni que’, TO08=" TEXT: Wi ght’,

OPUS-NT Programming Bruker Optik GmbH

Parameter 4 — Read From a Report

TO9=' TEXT: Manuf acturer’,
T10=" TEXT: Ref erence’, T11=' TEXT: Charge Nunber’,
T12=" TEXT: Comment’ });

PARAMETER SECTI ON

Running the Macro

Load afile and first run “Parameter 2”. This generates an information block,
which you can display in areport window. Now run “Parameter 3" and check
the block again. Y ou will see that only the sample name has changed.

6.21 Parameter 4 — Read From a Report

Task

Often it is necessary to read specific data from a report, which contains the
results of several data evaluation methods. In this example, we will extract the
number of peaks of a peak pick and subsequently use aloop to read the frequen-
cies of the peaks which will be displayed in amessage box. In addition, we will
format the output.

Macro Functions
StartL oop, EndL oop, Message, FromReportHeader, FromReportM atrix

We will use the FromReportHeader command to extract a value from the header
of areport. That requires to ascertain the position of the desired information
(here the number of peaks). In our case the number of hitsisfound in the third
row of the header.

Headers always consist of two parts. atitle (e.g. number of hits) and the actual
value. The command FromReportHeader allows you to select either the title
(option: LEFT) or the value (option: RIGHT).

The FromReportMatrix command allows to read data from a matrix if the col-
umn number is known. We want to read frequency values which are located in
the first column.

Note: Both commands use the report and subreport parameters which should be
set to “1” and “0”, respectively. Only a Quant and Ident report may consist of
several main reports and/or subreports. Refer to the manual of these software
packages for details.

We will demonstrate the use of characters in combination with a message box,
which are laos used as control characters in the command lines. Such a control
character will be interpreted as a printable character, if it is repeated twice; if

Bruker Optik GmbH OPUS-NT Programming 6-47

How to Write Macros

you want to enclose the unit cm-1 by brackets, you achieve thisby typing '[[cm-
1]]’. Thefollowing characters act as control characters:

<>[1{}" ;.

OPUS Functions

Peak Picking

This example introduces no new OPUS functions.

Generating the Macro

1) Define aFILE variable <Fi | e> with an AB data block associated and
three numerical variables <Count >, <Index> and <Peak
Posi ti on>. Initialize <l ndex> with “1”.

2) Select the Peak Picking function from the OPUS Evaluate pull-down
menu to generate a report (consisting of a peak table). On the Select
Files page, choose the variable <Fi | e> and set the Sensitivity to “20".
On the Frequency Range page select Use File Limits.

3) From the Special Macro Commands dialog box, choose the
FromReportHeader command. Enter the following values:

« Variable: <Count >

« File [<Fi | e>: AB/ Peak]
* Report: “1”

e Subreport: “0”

e Header Line: “3”

« Header Part: “RIGHT”

Special Macro Commands E3

[‘ariahle

| Index [Cornrmand Marme

|<Eount>

Add ariable |

ﬂ ﬁl_ﬁ |: IFromHeporlHeader ﬂ

| File: [[<File>-AB /Peak] =]
| Report: [1 =]
| Subreport: [0 =]
| Header Line: [3 =]
| |

Header Part; |F|IGHT

Cahicel |

Figure 45: Special Macro Commands Dialog — FromReportHeader Definition

4) Insert the StartLoop command using <Count > as variable.
5 From the Special Macro Commands dialog box, choose the

OPUS-NT Programming Bruker Optik GmbH

Parameter 4 — Read From a Report

FromReportMatrix command. Enter the following values:
« Variable: <Peak Position>

« File [<Fi | e>: AB/ Peak]

* Report: “1”

e Subreport: “0”

* Row: <l ndex>

e Column: “1”

Special Macro Commands E

[‘Yariable | Index [Command Mame

|<F'eak Fozition: j |T|_|T |: IFleHeportMatriH j

| File: |[<File>:ﬁ3«B.f'F'eak]

Repart: |1
Subreport; IEI

Riow: |<Inde>:>

Ll Lo L L Le

|
AddVariable | :
|

Colurnn: |1

Cancel |

Figure 46: Special Macro Commands Dialog — FromReportMatrix Definition

6) We make use of the Message command to display the value, that was
read from the report block. Enter the following message text:
"<l ndex>, Peak at <[, 0] Peak Position>[cm1]]’ .
Included in the command line is a statement to format the output; this
statement is enclosed in square brackets and defines the number of deci-
mals in our example no digits after the decimal point. [,2] for example
would cause an output with two digits after the decimal point. However,
these statements only concern the text output and do not change the data.
Further information about text formatting can be found in the Macro
Reference section.

7) We avoid the necessity to confirm each message by setting the Time
parameter to “5”. As aresult, the message will be displayed for 5 sec-
onds.

8) Next we increment the variable <I ndex> for the line number by 1:
<l ndex> =<l| ndex> +1

9) Finally, theloop hasto be closed by the EndL oop command.

10) Savethe macro as“Parameter 4”.
Listing (PARAMETER 4.MTX)
VARI ABLES SECTI ON

FILE <File> = AB, AB/ Peak;
NUVERI C <Count > = O;

Bruker Optik GmbH OPUS-NT Programming 6-49

How to Write Macros

NUVERI C <I ndex> = 1;
NUMERI C <Peak Position> = 0O;

PROGRAM SECTI ON

PeakPi ck ([<File>: AB], {NSP=9, PSM=1l, VWHR=1,

LXP=400. 000000, FXP=4000. 000000, QP8=" NO ,

@QP9=0. 200000, PTR=20.000000, QP4="NO, QP7=0.800000,
QP6="NO , (QP5=80.000000, PPM=1l, QPO="NO , QP3=4});
<Count > = FronReport Header ([<File>: AB/ Peak], 1, 0, 3,
Rl GHT) ;

StartLoop (<Count>, 0);

<Peak Position> = FronReportMatrix ([<File>: AB/ Peak],
1, 0, <lIndex> 1);

Message (' <l ndex>. Peak at <[, 0] Peak Position> [[cm
1]1]’, ON_SCREEN, 5);

<l ndex> = <| ndex>+1;

EndLoop (0);

PARAMETER SECTI ON

Running the Macro

Load a data file and run “Parameter 4”. After you selected the spectrum to be
processed, a message indicating the first peak is displayed. In the bottom part
of the message box, a counter shows the remaining display time. Y ou can skip
the message box at any time by clicking on OK or wait until the timer runs out.

6.22 Control 1 — Controlling a Macro Using
Buttons

Task

So far, we mostly wrote linear code, that isal command lines will be processed
subsequently. The first exception from a linear progression was introduced
with the loop command. Now we will learn how to tweak a macro program, in
order to make it flexible and more powerful.

Note that the following examples should only demonstrate the principle of how
to control the flow in a macro and therefore will only use Macro functions.

In our first example we will integrate two buttons (Button 1 and Button 2) in a
user dialog box to launch different actions. Clicking on the buttons will display
different messages, followed by the initial dialog box. The macro will only be
terminated by clicking on Continue.

6-50 OPUS-NT Programming Bruker Optik GmbH

Control 1 — Controlling a Macro Using Buttons

M acro Functions
Label, Goto, Message, User Dialog

We will define two BUTTON variables which are linked to different labels.
Clicking on the respective button in the user dialog box will then result in a
jump to one of these labels. The tweaks will be closed by the Goto command.

The Goto command allows to continue a macro at any line of the code that will
be indicated by alabel. Thelabel can be placed anywhere in the macro.

OPUS Functions

This example introduces no new OPUS functions.

Generating the Macro

1) Openthe New/Edit Variable dialog box and defineaBUTTON variable;
enter “Button 1” in the Name field and “first” in the Goto Label field.
This generates the following line in the variables window:

BUTTON <Button 1> = Goto (first)

Asyou can see, the variableis linked to ajump via the Goto command.

New/E dit Variable |
Static
" STRING ¢ BOOL & BUTTON
 NUMERIC FILE

Hame IEuttu:un 1

[ata Label Ifirst

[T Update Automatically

] I Cancel |

Figure 47: New/Edit Variable Dialog Box — Defining a Button Variable

2) Add another BUTTON variable (“Button 2”) and link it to the label
“second”.

3) Open the Special Macro Commands dialog box, select the UserDialog
command and BUTTON as variable type. From the drop-down list

Bruker Optik GmbH OPUS-NT Programming 6-51

How to Write Macros

choose <Button 1>. To display both buttons in the same line, type
“+<But t on 2>" after thefirst variable name.

Uszer Dialog Setup |

Title: |0

Option: [STANDARD =]
[eutton =] [<Button 15 +<Button 2> =]
-y =
=y =
faw o | =
|BLANK =l =]
bk o | <]
Eak o | <]
-y -]
- =
fa 5 | <]
|BLANK =l =]
|BLANK =l =]
bk o | <]
|BLANK =l =]

] I Cancel |

4)

5)
6)

7)

8)

9)

Figure 48: Defining Button Variables

Each time you click on Continue in a user dialog box, the next program
line will be processed. We will redirect the macro to the last line by
inserting a Goto statement after the line containing the UserDialog com-
mand. Use “end” as label name. You will notice that a label with the
same name will automatically be created. We will move this label to the
end of the code in the last step.

Insert the label for the first jump:

Label (first)

Append a message that indicates the correct target like “First Button
pressed”. Set the Timer to 5 seconds.

After the delay time has expired the user dialog box should be displayed
again. Therefore, insert another Goto command with “start” as the label
name. Again, the label “start” is automatically generated. Move the
label to the top of the PROGRAM SECTION.

In asimilar manner, add the label for the second button, its message and
the Goto statement.

Finally, movetheline Label (end) to thelast position of the macro.

10) Savethe macro as*“Control 1”.

6-52

OPUS-NT Programming Bruker Optik GmbH

Control 1la - Controlling a Macro Using Buttons

Listing (CONTROL 1.MTX)

VARI ABLES SECTI ON
BUTTON <Button 1>
BUTTON <Button 2>

Goto (first);
Goto (second);

PROGRAM SECTI ON

Label (start);

UserDi al og (0, STANDARD, BUTTON: <Button 1>+<Button 2>
BLANK, BLANK, BLANK, BLANK,

BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK);

Goto (end);

Label (first);

Message (' First Button pressed’, ON_SCREEN, 5);
Goto (start);

Label (second);

Message (’ Second Button pressed’, ON _SCREEN, 5);
CGoto (start);

Label (end);

PARAMETER SECTI ON
Running the Macro

Run the macro and test both buttons in the user dialog box. Exit the macro by
clicking on Continue.

6.23 Control 1a — Controlling a Macro Using
Buttons

Task

We will modify “Control 17, so that the default buttons (Continue, Help and
Cancel) won't be displayed in the user dialog box.

M acr o Functions
Label, Goto, Message, User Dialog

We will use the option NODEFAULTBUTTON to suppress the default buttons
in the user dialog box.

OPUS Functions

This example introduces no new OPUS functions.

Bruker Optik GmbH OPUS-NT Programming 6-53

How to Write Macros

Generating the Macro

1) Open “Control 1" and edit the UserDialog command line. Choose
NODEFAULTBUTTON from the Option list.

2) Savethe macro as“Control 1a’.

Listing (CONTROL 1a.MTX)

VARI ABLES SECTI ON
BUTTON <Button 1>
BUTTON <Button 2>

Goto (first);
Goto (second);

PROGRAM SECTI ON

Label (start);

User Di al og (0, NODEFAULTBUTTON, BUTTON: <Butt on
1>+<Button 2>, BLANK, BLANK, BLANK, BLANK

BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK);

Goto (end);

Label (first);

Message (' First Button pressed’, ON_SCREEN, 5);
Coto (start);

Label (second);

Message (’ Second Button pressed’, ON _SCREEN, 5);
Goto (start);

Label (end);

PARAMETER SECTI ON

Running the Macro

When you run the macro, only the two buttons you defined are displayed. To
exit the macro, you now have to click on the small x on the right side of thetitle
bar.

6.24 Control 2 - Controlling a Macro Using If,
Else And Elseif

Task

Simple program structures can easily be controlled by the Goto command. The
extensive use of Goto statements in longer macros can be confusing. The If
statement is a better way of structuring complex programs.

The following example analyzes several parameters entered in a user dialog
box:

6-54

OPUS-NT Programming Bruker Optik GmbH

Control 2 — Controlling a Macro Using If, Else And Elseif

» Check box: if the check box is selected by the user a message will be
displayed.

» Drop-down list showing the options “yes’ and “no”: if “yes’ is cho-
sen amessage will be displayed.

* Numerical field: the input of a numerical field will be compared to a
value (here greater than or equals 10) and the result will be displayed.

o Text field: atext search will be performed using the input of the text
field on another predefined text and the result will be displayed.

M acro Functions
If, Else, Endif, Message, User Dialog, FindString

The If command compares two variables or values using several numerical or
text operators:

Numerical operators:

EQ. tests identity

.GT. testsif value 1 is greater than value 2

LT. testsif value 1 issmaller than value 2

.GTEQ. testsif value 1 is greater than or equal to value 2
LTEQ. testsif value 1 is smaller than or equal to value 2
.NE. testsif value 1 isnot equal to value 2

Text operators:

.NOCASE_PARTOF. testsif text 1isincluded intext 2, thetext is
not case-sensitive

.CASE PARTOF. testsif text 1isincluded intext 2, thetext is
case-sensitive

An If statement must be terminated by an Endif statement; Else can be included
optionally:

» |f statement without Else — if the condition is met, all code enclosed
by the If/Endif structure will be processed. Otherwise, the program
jumps to the line following the Endif statement. This structure is
used if an action should either be processed or not.

» |f statement in combination with Else — if the condition is met, all
code enclosed by the If/Else structure will be processed. Then a
jump to the Endif statement follows and the macro continues with the
line following the Endif statement. Otherwise, the code enclosed by
the Else/Endif will be processed. This structure is used to process
two alternatives.

We will use new line typesin the user dialog box: CHECKBOX, COMBOBOX
and TEXT.

Bruker Optik GmbH OPUS-NT Programming 6-55

How to Write Macros

OPUS Functions

This example introduces no new OPUS functions.

Generating the Macro

1)

2)

3)

Define the following variables:

BOOL <Checkbox> = TRUE; (thevalueof BOOL variablescan either
be“TRUE” or “FALSE”")

STRI NG <Yes or No> = '’ ; (no vaue defined)

NUVERI C <Test of Numbers> = 0;

STRI NG <Search in> = "abcdefghijk’;

STRI NG <Search for> = '’ ; (novaue defined)

NUMERI C <Resul t > = 0;

Initialize the variable <Yes or No> with “Yes’ and “No” by entering
the following command lines:

<Yes or No>[0] = ’'Yes’;

<Yes or No>[1] = 'No’;

Include a user dialog box of the following type:

Type Variable Comment

CHECKBOX <Checkbox> acheck box will be displayed

COVBOBOX <Yes or No> adrop-down list consisting of
the two values will be displayed

EDI T <Test of Nunbers> field for numerical input

TEXT <Search in> displays atext

EDIT <Search for> field for text input

6-56

OPUS-NT Programming Bruker Optik GmbH

Control 2 — Controlling a Macro Using If, Else And Elseif

Uszer Dialog Setup |
Title: |0

Option: |STANDARD =]
[cHECkEOR =] [<Checkbos> =]
|coMeoBOx =] [<Yes orNes =]
IEDIT j |<TesthNumI:uers> j
| TExT =] [<5earchin =]
IEDIT j |<Sear|:hh:|r> j
bk o | <]
ek o | <]
BT <]
e -]
[k o | -]
|BLANEK =l =]
|BLANEK =l =]
bk o | <]
|BLANEK =l =]
ITI Cancel |

Figure 49: Defining the User Dialog

4) Now the test sequences areincluded. First we will test if the check box
was selected in the user dialog. Include the If command and choose
<Checkbox> asthefirst variable. This variable has the value “TRUE”
if the check box has been selected, otherwise “FALSE”. Set the Condi-
tionto “.EQ.” and Variable 2to “TRUE”".

Special Macro Commands E

Command Name

|
[[
|
|
|

ariable 1: |<Eheckbm:>
Condition: | E0.

Lef Lef L

‘ariable 2 |THUE

AddVariable |

Cancel |

Figure 50: Defining the If Statement

5) In casethe check box was selected the following message should be dis-
played:

Bruker Optik GmbH OPUS-NT Programming 6-57

How to Write Macros

6)
7)

8)
9)

10)

11)

12)

13)

14)
15)

Message (' Check box was checked , ON_SCREEN,
NO_TI MEQUT) ;

TheEndi f () ; statement closesthefirst If sequence.

Next we will test which value was selected from the drop-down list.
This can be done by clicking the (array) type variable without an array
index. The variable always returns the value previously chosen from a
combo box. Include the following If statement:

Variable 1 <Yes or No>

Condition . CASE_PARTCF.

Variable 2 “Yes’

Again, if the string “Yes’ was selected the following message should be

displayed:
Message (' Yes was sel ected’, ON_SCREEN, NO TI MEQUT) ;

Close the second If statement with the Endi f () ; command.

The third test compares the user input (stored in <Test of Num
ber s>) to 10. Include the following If statement:

Variable 1 <Test of Nunbers>

Condition . GEQT.

Variable 2 “10”

If the input was greater than 10 or equals 10, the next line is executed
and should show the following message:
Message (' Number is >>= 10, ON_SCREEN, NO_TI MEOUT);

Note the repeated “>" sign.

In order to be able to display another message in case the input is
smaller than 10, we include the El se() ; command.

The message following the El se(); command will only be processed
if the input was smaller than 10:
Message (’ Number is << 10, ON_SCREEN, NO _TI MEQUT);

We close this If structure with the Endi f () ; command.

The last test is a text comparison. This time we choose an alternative
route. We use the FindString function which searches one text segment
in a second text. The result of the search is the position of the text
searched for, starting at 0. If the query was unsuccessful -1 will be
returned.

Open the Special Macro Commands dialog box and select the
FindString command. Use <Resul t > as variable name for the position
of the string and set the remaining parameters as follows:

Searchin <Search in>

Search for <Search for>

Search Option “CASE”

16) Now we only need to check whether the returned value differs from -1:

If (<Result> .NE., -1);

17) Again we need to display two messages depending on the outcome of

the search. Append a messages stating that the text was found, fol-
lowed by El se(). In the next line include a message stating that the
text was not found and terminate the structure by Endi f () .

18) Savethe macro as*“Control 2”.

6-58

OPUS-NT Programming Bruker Optik GmbH

Control 2 — Controlling a Macro Using If, Else And Elseif

Listing (CONTROL 2.MTX)
VARI ABLES SECTI ON

BOOL <Checkbox> = TRUE;

STRI NG <Yes or No> = '’ ;

NUMERI C <Test of Nunbers> = 0;

STRI NG <Search in> = ' abcdefghijk’;
STRI NG <Search for> = "'

NUVERI C <Result> = 0;

PROGRAM SECTI ON

<Yes or No>[0] = 'Yes’;

<Yes or No>[1] = "No’;

UserDi al og (0, STANDARD, CHECKBOX: <Checkbox>, COw
BOBOX: <Yes or No>, EDIT: <Test of Numbers>

TEXT: <Search in>, EDIT:<Search for> BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);

I f (<Checkbox> .EQ, TRUE)

Message (' Checkbox was checked’, ON_SCREEN,

NO_TI MEQUT) ;

Endif ();

If (<Yes or No>, .CASE PARTOF., 'Yes');

Message (' Yes was sel ected’, ON_SCREEN, NO_TI MECUT);
Endi f ();

If (<Test of Nunbers>, .GIEQ, 10);

Message (' Nunmber is >>= 10°, ON_SCREEN, NO_TI MEQUT);
El se();

Message (' Nunmber is smaller than 10, ON_SCREEN
NO_TI MEQUT) ;

Endi f();

<Result> = FindString (<Search in>, <Search for>,
CASE) ;

If (<Result> .NE., -1);

Message (' Text was found’', ON_SCREEN, NO Tl MEQUT);
El se();

Message (' Text was not found’, ON_SCREEN, NO_TI MECUT);
Endi f();

PARAMETER SECTI ON
Running the Macro

Complex programs like these should preferably be tested with the Macro
Debugger. Check if all combinations work and if the conditions are met suc-
cessfully.

Bruker Optik GmbH OPUS-NT Programming 6-59

How to Write Macros

6.25 Control 3 — Error Handling

Task

When writing macros it is crucial to know if al functions are executed cor-
rectly. Making mistakes while writing your own macros will eventualy be
unavoidable. Most of the OPUS and Macro functions will return an error code,
that can checked within a macro and can be used to change the flow in a macro.

In this example, we will use the OPUS Load File command which returns an
error message if the indicated spectrum is not found.

M acr o Functions
If, Else, Endif, Message, User Dialog,

We use the keyword MACROERROR in combination with the If command to
test for errors. The If command must be placed right after the function to be
tested.

If MACROERROR is used with the message command, a specific error mes-
sage will appear on the screen while running the macro.

OPUS Functions
Load, Baseline Correction, Normalize

This example introduces no new OPUS functions.

Generating the Macro

1) Wewill base this example on the “Load 2" macro.

2) Insert an If statement after the Load function; use “MACROERROR” as
Variable 1, the .EQ. condition and “TRUE” as Variable 2.
| f (MACROERROR, .EQ, TRUE);

3) Incase of an error, we will make use of the MACROERROR keyword
to display an error message.
Message (MACROERROR, ON_SCREEN, NO_TI MEOUT);

4) We would like the macro to proceed normally if no error occurs. There-
fore, weincludean El se(); statement.

5) Append an Endif(); statement to become the last line of the macro.
6) Savethemacro as*“Control 3".

Listing (CONTROL 3.MTX)
VARI ABLES SECTI ON

FILE <$ResultFile 1> = Spec;

6-60 OPUS-NT Programming Bruker Optik GmbH

Timer 1 — Timer Function With Delay Time

STRI NG <Pat h> = * C:\ OPUS_NT\ DATA'’ ;
STRING <Fi |l e Name> = ' XYZ';

PROGRAM SECTI ON

User Di al og (Laden, STANDARD, EDI T:<Path>, EDI T:<File
Nanme>, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);

<$Resul tFile 1> = Load (0, {DAP='<Path>", DAF='<File
Narme>" , | NP="D: \ OPUS\ DEBUG METHODS'

| FP=" D: \ OPUS\ Rel ease\ METHODS' , | NM=" DEFAULT. TXD ,

| FN=' DEFAULT’ });

| f (MACROERROR, .EQ, TRUE);

Message (MACROERROR, ON_SCREEN, NO_TI MEQUT);

El se ();

Baseline ([<$ResultFile 1>:Spec], {BME=2, BCO=0,
BPO=64}) ;

Normal i ze ([<$ResultFile 1>:Spec], {NME=1,

NFX=4000. 000000, NLX=400.000000, NWR=1});

Endif ();

PARAMETER SECTI ON
Running the Macro

Run the macro and enter a non-valid file name. After clicking on Continue, an
error message is shown. Alsotry an existing file name.

6.26 Timer 1 — Timer Function With Delay
Time

Task

In certain situations atime control of the macro is desirable. Examples are cer-
tain actions, that should be launched or repeated at a given time or simply the
evaluation of the current date and time during run time.

We start by programming a clock that will turn itself off after a delay of one
minute.

Macro Functions
StartLoop, EndLoop, GetTime, StaticMessage, Timer

The GetTime function returns the current date and time. Separate variables are
used to return the year, month, day, hour, minute and second.

We will bundle the date and time in two text lines with the help of format func-
tions, and display them in a static message box. Contrary to a regular message

Bruker Optik GmbH OPUS-NT Programming 6-61

How to Write Macros

box, the static message won't interfere with processing the commands of the
macro. A repeated call of the static message refreshes the display or can be
used to hide the message. We will refresh the display every second. Thisis
done by placing the Timer command in aloop.

We format all variable output to two digits; include [2] as formatting command.
The result will be aleading “0” in case of one digit values, while only the last
two digitswill be displayed if the value has more than two digits:

value of the variable: 1 displayed value: 01
value of the variable: 1999 displayed value: 99

OPUS Functions

This example introduces no new OPUS functions.

Generating the Macro

1) Define the following numerical variables. <Year >, <Mont h>,
<Day>, <Hour>, <M nute>and<Second>.

2) The macro will be controlled by aloop with the counter set to 60 (corre-
sponging to arun time of 60 seconds).
StartLoop (60, 0);

3) Open the Special Macro Commands dialog box and select the GetTime
function. Due to the large number of return values of this function, the
variables are passed as function arguments.

GetTime (<Year>, <Month> <Day>, <Hour>, <M nute>,
<Second>);

4) Now select the StaticMessage command and |eave the value of Option
set to “SHOW?”. Enter an expression for the date in the first line:
<Date> = ' <[2] Day>. <[2] Mont h>. <[2] Year >’ ;

In the second line, enter an expression for the time (note the double
colons):
<Time> = ' <[2] Hour>::<[2] M nut e>:: <[2] Second>’ ;

662

OPUS-NT Programming Bruker Optik GmbH

Timer 1 — Timer Function With Delay Time

Static Message |
Option: [SHOW =]
Line 1= |<[2]D ay> <[2Manth> <[2]Years' x|
Line Z: |'<[2]H|:|ur>::<[2]I'--1inute>::<[2]5&u: =]
Lire 3: I j
Lirme 4: I j
Line & I j
Line E: I j
Line 7: I j
Lire 8: I j
Lire 5: I j
Lire 10: I j
Lire 171: I j
Lire 12: I j
Lire 13 I j
Lire 14: I j
] I Cancel |

Figure 51: Static Message

5) Append the Timer command with Option set to “WAITTIME” and Time
set to “1”. This causes the macro to wait for one second.

6) Append an EndLoop statement and save the macro as“Timer 1”.

Listing (TIMER 1.MTX)
VARI ABLES SECTI ON

NUMERI C <Hour > = O;
NUVERI C <M nute> = O;
NUVERI C <Second> = O;
NUMERI C <Year> = 0;
NUVERI C <Mont h> = 0;
NUMERI C <Day> = O0;

PROGRAM SECTI ON

StartLoop (60, 0);

CetTime (<Year>, <Month>, <Day>, <Hour>, <M nute>,
<Second>);

Stati cMessage (SHOW {’ <[2] Day>. <[2] Mont h>. <[2] Year >,
" <[2] Hour>:: <[2] M nute>:: <[2] Second>’ });

Timer (WAITTIME, 1);

EndLoop (0);

PARAVETER SECTI ON

Bruker Optik GmbH OPUS-NT Programming 6-63

How to Write Macros

Running the Macro

A small dialog box is shown in the upper-left part of your screen after you
started the macro. The current date and time will be displayed for one minute.
The displayed time is refreshed every second.

16.09.99
150737

Figure 52: Displaying Date and Time

6.27 Timer 2 — Timer Function Using a Clock

Task

Another option of the Timer function allows to wait until a specified time has
been reached. In this example, we will evaluate the current time, add one
minute and pause the macro until the clock reachesthistime. After one minute
has passed a message will be displayed.

M acr o Functions
GetTime, Message, Timer

We will use the Timer command in combination with the WAITUNTIL key-
word.

OPUS Functions

This example introduces no new OPUS functions.

Generating the Macro

1) Define three numerical variables: <Hour >, <M nut e> and <Sec-
ond>.

2) Open the Special Macro Commands dialog box and select the GetTime
function. Since we don’t need the date set the parameters for <Year >,
<Mont h> and <Day>to“0". Use<Hour>, <M nute> and <Sec-
ond> for the remaining parameters.

CetTine (0, 0, 0, <Hour>, <M nute> <Second>);

3) Now we add one minute to the current time:
<M nute> = <M nute> + 1,

4) Choose the Timer command from the Command Name list in the Special
Macro Commands dialog box and select WAITUNTIL in the Option

6-64 OPUS-NT Programming Bruker Optik GmbH

Timer 3 — Timer Function Using the If Statement

field. Enter the new timein the HH:MM:SS format into the Time field:
<Hour >: <M nut e>: <Second>

5) Append a message box displaying the calculated time:
Message (' It is <[2]Hour>::<[2] M nute>::<[2] Second>’
ON_SCREEN, NO_TI MEOQOUT) ;
6) Savethemacroas“Timer 2".
Listing (TIMER 2.MTX)

VARI ABLES SECTI ON

NUMERI C <M nut e>

NUVERI C <Hour > = O;
NUVERI C <Second> =

0;

0;

PROGRAM SECTI ON

GetTime (0, 0, 0, <Hour>, <M nute>, <Second>);
<M nute> = <M nute> + 1;

Ti mer (WAI TUNTI L, <Hour>: <M nut e>: <Second>);
Message (It is <Hour>::<M nute>::<Second>",
ON_SCREEN, NO_TI MEQUT) ;

PARAMETER SECTI ON

Running the Macro

After starting the macro, the message “Macro Waiting” will be displayed. The
remaining time is shown in the lower part of the box. You can immediately
continue the macro by clicking on Continue.

6.28 Timer 3 — Timer Function Using the If
Statement

Task

“Timer 2" has the disadvantage, that no commands are processed while the
macro pauses. The following macro presents an alternative way. Asin“Timer
2", we evaluate the current time and add one minute. But in addition a message
is displayed for 2 seconds, after every 10 seconds until the calculated time has
passed. Finaly, a message showing the current time will be displayed.

Macro Functions
GetTime, Message, Timer, If, Else, Endif, Goto

We will use an If statement in combination with the TIME keyword.

Bruker Optik GmbH OPUS-NT Programming 6-65

How to Write Macros

OPUS Functions

This example introduces no new OPUS functions.

Generating the Macro

1) Load “Timer 2" and delete all code from the PROGRAM SECTI ON
except the first two lines.

2) Insert alabel:

Label (Action);

3) Insert an If statement and enter the calculated time (as HH:MM:SS) in
the field Variable 1. Enter “.GT.” and “TIME”" as Condition and Vari-
able2. TIME causesthe If statement to compare the current time to the
value of Variable 1.

4) The operator .GT. ensures, that the command lines following the If state-
ment will be processed until the condition is met. We use the following
message, visible for 2 seconds, to indicate that the calculated timeis not
reached.

Message (' Macro still working , ON_SCREEN, 2);

5) Usethe Timer function to wait another 10 seconds:

Ti mer (WAITTIME, 10);

6) Append Goto (Action); tojump tothelabel after 10 seconds have
elapsed.

7) AppendanEl se(); statement to execute the following lines after the
specified time has been reached.

8) After the predefined time has been reached the following message will
be displayed:

Message ("It is <Hour>::<M nute>::<Second>',
ON_SCREEN, NO_TI MEOUT) ;
9) Closethelf statement with Endi f () ;

10) Savethe macroas“Timer 3”.

Listing (TIMER 3.MTX)
VARI ABLES SECTI ON

NUVERI C <Hour > = O;
NUMERI C <M nute> = 0;
NUMERI C <Second> = O0;

PROGRAM SECTI ON

GetTinme (O, O, 0, <Hour>, <M nute>, <Second>);
<M nute> = <M nute> + 1;

Label (Action);

I f (<Hour>:<M nut e>: <Second>, .GI., TIM);
Message (Macro still working, ON_SCREEN, 2);
Timer (WAITTIME, 10);

Goto (Action);

El se ();

6-66 OPUS-NT Programming Bruker Optik GmbH

Main 1 — Calling Sub Routines with RunMacro

Message ('It is <Hour>::<M nute>::<Second>",
ON_SCREEN, NO_TI MEQUT) ;
Endi f();

PARAMETER SECTI ON
Running the Macro

When you start the macro, two aternating messages will be displayed: “Macro
still working* and “Macro waiting”. After one minute, the last message will be

displayed.

6.29 Main 1 — Calling Sub Routines with
RunMacro

Task

The examples so far have been relatively smple. If you are facing a complex
task you will notice, that the total length of the macro increases rapidly. To
keep macros clearly structured and simple to read they should be divided into
small sub routines. These routines can be tested individually and independent
from the status of the main macro. The task of the main macro should therefore
be restricted to call these sub routines and exert the overall control.

Our first example, will be a main macro calling “Measure 3" as a sub routine.
Before and after calling the sub routine messages should be displayed.

M acr o Functions
RunMacro, Message

This example introduces no new Macro functions.

OPUS Functions

This example introduces no new OPUS functions.

Generating the Macro

1) Start with displaying a message:

Message (’ Submacro is started’ , ON_SCREEN
NO_TI MEQUT) ;

2) From the OPUS pull-down menu, select the Run Macro command. A
load file dialog box will be displayed. Choose “Measure 3" from the
Macro directory. Exit the parameter dialog box and append another
message:

Bruker Optik GmbH OPUS-NT Programming 6-67

How to Write Macros

Message (' Submacro has finished , ON_SCREEN,
NO_TI MEQUT) ;

3) Savethemacroas“Mainl”.

Listing (MAIN L.MTX)
VARI ABLES SECTI ON

PROGRAM SECTI ON

Message (’ Submacro is started’ , ON_SCREEN,

NO_TI MEQUT) ;

RunMacro (0, {MPT="C:\OPUS_NT\ Macro’, M-N=" MEASURE
31});

Message (’ Submacro has finished , ON_SCREEN,

NO_TI MEQUT) ;

PARAMETER SECTI ON
Running the Macro

When you start the macro, the first message will be displayed. After confirming
the dialog, a background spectrum and three sample spectra are measured.
Finally, the second message will be displayed.

6.30 Main 2 — Calling Sub Routines with

CallMacro

Task

The previous example can easily be implemented, but has its limitations. For
instance, data measured or loaded in the sub macro are not accessible from the
sub macro and vice versa. Also, parameter values cannot be exchanged
between both programs. These restrictions can be overcome by using the Call-
Macro command.

We will use the macro “Manipulate 2", which performs a baseline correction on
a spectrum, as a sub routine and display two messages in the main macro, prior
to and after the data processing.

Macro Functions
CdlMacro, GetMacroPath, UserDialog, Message

We will use the CallMacro command to access the sub routine. CallMacro is
able to forward variables to the routine via a user dialog box included in the sub
routine. This dialog box must contain these variables in the same order and

668

OPUS-NT Programming Bruker Optik GmbH

Main 2 — Calling Sub Routines with CallMacro

with the same type in which they appear in the CallMacro command line. In our
example, we will exchange only one FILE variable.

We determine the path of the sub macro with the GetMacroPath command.
This command returns the path to the directory from which the main macro was
started (and which also must contain the sub macro). This ensures that macros
work independent of a specific directory structure.

OPUS Functions

This example introduces no new OPUS functions.

Generating the Macro

1)
2)

3)
4)

5)

Start a new macro and define a FILE variable <Fi | e> with an absorp-
tion block associated and a TEXT variable <Pat h>.

Insert the GetM acroPath command and store the result in <Pat h>.
Create a user dialog box to be able to assign a spectrum to <Fi | e>.
Display the following message:

Message (' Submacro is started , ON_SCREEN,

NO_TI MEOUT) ;

Select the CallMacro command from the Spoecial Macro Commands dia-
log box. A new dialog box will be displayed. In thefirst field we enter
the path and file name of the sub macro to be called:

" <Pat h>\ mani pul ate 2. ntx’

You don’'t have to enter the file name extension “.MTX”. This allows
you to either run macros in text or binary format without the need to
modify a macro.

The remaining two columns are used to define the parameter exchange.
In the left column, enter the parameter to be forwarded; select
[<Fil e>: AB] from the list. The right column holds the returned
parameters. We don’t need to make any entries here, exit the dialog by
clicking OK.

Bruker Optik GmbH

OPUS-NT Programming 6-69

How to Write Macros

Call a Submacro

%]

Sub Macra: |'<F'ath>"~mani|:uulati|:|n 2.k’

Paszed Parameters Returned Parameters

[<Filer:AR]

Ll b b b b e B s e e
Ll b b b b e b e L L L

Cancel |

Figure 53: Call a Submacro Dialog Box

6) Finally, include a message to indicate that the sub macro has been pro-
cessed:
Message (’ Submacro has finished , ON_SCREEN,
NO_TI MEQUT) ;

7) Savethemacroas“Main 2.

Listing (MAIN 2MTX)

VARI ABLES SECTI ON

STRING <Path> = "";
FILE <File> = AB;

PROGRAM SECTI ON

<Pat h> = Get MacroPath ();

User Di al og (Mai n Macro, STANDARD, FILE:[<File>: AB],
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);

Message (’ Submacro is started’, ON_SCREEN,

NO_TI MEQUT) ;

Cal Il Macro (' <Pat h>\mani pulation 2. ntx’, {[<File>: AB]},
{});

Message (' Submacro has finished , ON_SCREEN,

NO_TI MEQUT) ;

PARAMETER SECTI ON

6-70

OPUS-NT Programming Bruker Optik GmbH

Main 3 — Returning Values From a Sub Routine

Running the Macro

In OPUS, load a spectrum and run the macro in the Macro Debugger. Step
through the first three command lines and select the spectrum previously
loaded. When the CallMacro line is reached, an additional button is displayed
in the Macro Debugger: Sep Into Submacro. Upon clicking this button, a new
dialog box containing the sub macro is displayed. While this dialog is active,
you have no access to the main macro. Now, step through the sub macro; note
that the user dialog of the sub macro is not displayed. It isused only to assign
the values forwarded by the main macro (here the spectral data) to one of its
own variables. After the sub macro has been completely processed, the main
macro takes control again.

6.31 Main 3 — Returning Values From a Sub
Routine

Task

In this example we will call two sub macros. Thefirst sub macro generates a
new spectrum by multiplying a spectrum with the Spectrum Calculator. The
second sub macro is based on “Parameter 4", which we will extend and save as
“Submacro 2”. This macro creates a peak table with variable frequency limits
and sensitivity. All values (the spectrum name, multiplication factor, and the
parameters for the peak picking) should be entered in the main macro by the
user and then forwarded to the sub macros. The peaks will be read from the
peak table and displayed in a message.

M acr o Functions

CalMacro, GetMacroPath, UserDialog, Message, StartL oop, EndL oop,
FromReportHeader

This example introduces no new macro functions.

OPUS Functions
Spectrum Calculator, Peak Picking

We will use the Spectrum Calculator from the OPUS Manipulate pull-down
menu. Thisfunction always generates a new result file.

Generating the Macro

1) Start a new macro for the first sub macro and define a FILE variable
<Fi | e> and aNUMERICAL variable <Fact or >.

2) Create auser dialog box and insert both variables.

Bruker Optik GmbH OPUS-NT Programming 6-71

How to Write Macros

3)

4)
5)
6)
7)
8)

9)

10)
11)

12)
13)

14)

Open the OPUS Manipulate menu and select the Spectrum Calculator.
Select the variable [<Fi | e>: AB] and multiplicate it by 2. Click on
the“ =" sign. The parameter dialog box opens. We want to use a vari-
ableinstead of a constant factor, therefore we need to modify the follow-
ing line for the parameter FOR:

"[<Fi | e>: AB] *<Fact or >’

After clicking on OK, anew FILE variable <$Resul t Fi | e 1>isgen-
erated.

Append a user dialog box, containing only <$Resul t Fil e 1>. This
causes <$Resul t Fi | e 1> to bereturned to the main macro.

Save the macro as “ Submacro 1”.
Load “Parameter 4”.

Add three NUMERICAL variables<x- St art >, <x- End> and <Sen-
sitivity>,

Add auser dialog containing the variables <Fi | e>, <x-Start >, <x-
End> and <Sensi ti vi t y>. Movethisline to the top of the macro.

Edit the PeakPick command and deactivate the option Use File Limits.
In the parameter dialog box assign the following variables:

FXP <x-Start>

LXP <x- End>

PTR <Sensitivity>

Save the macro as “ Submacro 2”.

Load “Main 2" and add the following variables:
NUMERI C <x-Start> = 4000;

NUMERI C <x- End> = 3000;

NUMVERI C <Sensitivity> = 1;

NUVERI C <Factor> = 0. 5;

FI LE <New Fil e> = AB;

Append the four NUMERICAL variables to the user dialog in line two.

Change the message text of the messages in line three and five to “ Sub-
macro 1..."

Edit the CallMacro command and change the name of the sub macro to
“Submacro 1.mtx”. Add <Factor> as second parameter to be
exchanged. Choose[<New Fi | e>: AB] from the Returned Paramters
list for the[<Fi | e>: AB] variable.

6-72

OPUS-NT Programming Bruker Optik GmbH

Main 3 — Returning Values From a Sub Routine

Call a Submacro |

Sub Macror |'<: Pathzhzubrnacro 1.mty'

Pazzed Parameters Feturned Parameters

[«Files-AB] [«Mew File:AR]

<Fachar:

Ll e b e e e e e e

Lflef b e f Ll b Ll Ll f L e f Ll

Cancel |

Figure 54: Defining Parameters For Sub Macro 1

15) Add the following message:
Message (’ Submacro 2 is started’ , ON_SCREEN,
NO_TI MEQUT) ;

16) Insert a CallMacro command; enter * <Pat h>\ submacro 2. ntx’ in
the Sub Macro field. Select [<New Fi | e>: AB], <x-Start>, <x-
End> and <Sensi ti vi ty> asparametersto be transferred. Sub
macro 2 does not return any values.

17) Add the following message:
Message (' Submacro 2 has finished, ON_SCREEN
NO_TI MEOUT) ;

18) Savethe macro as“Main 3.
Listing (SUBMACRO 1.MTX)

VARI ABLES SECTI ON

FILE <File> = AB;

NUMERI C <Factor> = O;

FILE <$ResultFile 1> = AB;

PROGRAM SECTI ON

Bruker Optik GmbH OPUS-NT Programming 6-73

How to Write Macros

UserDi al og (0, STANDARD, FILE: [<File>:AB], EDI T:<Fac-
tor>, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK);

<$ResultFile 1> = Calculator ([<File>: AB], {CDl =1,
FOR="[<Fi | e>: AB] *<Factor>'});

UserDi al og (0, STANDARD, FILE:[<$ResultFile 1>: AB],
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);

PARAMETER SECTI ON

Listing (SUBMACRO 2.MTX)
VARI ABLES SECTI ON

FILE <Fil e> = AB, AB/ Peak;
NUMERI C <Count > = 0;

NUVERI C <I ndex> = 1;

NUVERI C <Peak Position> = 0;
NUMERI C <x-Start> = O;
NUMERI C <x- End> = 0;

NUMERI C <Sensitivity> = 0;

PROGRAM SECTI ON

UserDi al og (0, STANDARD, FILE: [<File>:AB], EDI T:<x-
Start>, EDI T:.<x-End> EDIT:<Sensitivity> BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK);

PeakPi ck ([<File>: AB], {NSP=9, PSM=1l, WHR=0, LXP=<x-
End>, FXP=<x-Start>, QP8="NO , QP9=0.200000, PTR=<Sen-
sitivity> QP4="NO, QP7=0.800000, QP6="NO ,

@QP5=80. 000000, PPM=1, QPO="NO , QP3=4});

<Count > = FronReport Header ([<File>: AB/ Peak], 1, 0, 3,
Rl GHT) ;

StartLoop (<Count>, 0);

<Peak Position> = FronmReportMatrix ([<File>: AB/ Peak],
1, 0, <lIndex> 1);

Message (' <l ndex>. Peak at <[, 0] Peak Position> [[cm
1]1]’, ON_SCREEN, 5);

<l ndex> = <I ndex>+1;

EndLoop (0);

PARAMETER SECTI ON

Listing (MAIN 3.MTX)
VARI ABLES SECTI ON

STRING <Pat h> = "’ ;

FILE <File> = AB;

NUMERI C <x- Start Frequency> = 4000;
NUMERI C <x- End Frequency> = 3000;
NUMERI C <Sensitivity> = 1;

6-74 OPUS-NT Programming Bruker Optik GmbH

Output 1 — Directing Output to a File

FI LE <New Fil e> = AB;
NUVERI C <Factor> = 0. 5;

PROGRAM SECTI ON

<Pat h> = Get MacroPath ();

UserDi al og (Mai n Macro, STANDARD, FILE:[<File>: AB],
EDI T: <x- Start Frequency>, ED T:<x-End Frequency>,
EDI T: <Sensitivity> EDIT: <Factor>, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);
Message (' Submacro 1 is started’ , ON_SCREEN,

NO_TI MEQUT) ;

Cal | Macro (' <Path>\submacro 1.nmtx’, {[<File>: AB],
<Factor>}, {[<New File>:AB]});

Message (’ Submacro 1 has finished , ON_SCREEN,
NO_TI MEQUT) ;

Message (' Submacro 2 is started’ , ON_SCREEN,

NO_TI MEQUT) ;

Cal | Macro (' <Pat h>\submacro 2. nmx’, {[<New File>: AB],
<x- Start Frequency>, <x-End Frequency>, <Sensitiv-

ity>}, {});
Message (' Subnmacro 2 has finished , ON_SCREEN,
NO_TI MEQUT) ;
PARAVETER SECTI ON
Running the Macro

Similar to the last example, use the Macro Debugger to test the macro.

6.32 Output 1 — Directing Output to a File

Task

The last two examples demonstrate how to handle data output. The first exam-
ple simply writes three text linesto afile. Thisfile should then be read and its
content displayed. Finally, wewill delete thefile.

Macro Functions
TextToFile, Message, StartL oop, EndL oop, Delete

TextToFile writes text line by line to a specified file. The text will either be
appended to an existing file, or a new file can be created to hold the text. The
reverse case involves using the ReadTextFile command. Thiscommand reads a
text file line by line and stores the content in an array.

A set of macro commands exist to copy, rename and delete files. We will use
the Delete command to delete the text file created before.

Bruker Optik GmbH OPUS-NT Programming 6-75

How to Write Macros

OPUS Functions

This example introduces no new OPUS functions.

Generating the Macro

1

2)

3)

4)
5)

6)

7)

8)

9)
10)

11)
12)

13)

Start a new macro and define the following variables.
STRI NG <Pat h> = ;

STRI NG <Li nes> = 7

STRI NG <Text> ="

NUMERI C <Count > 0;

NUMERI C <I ndex> 0;

Initialize the first three array elements of <Li nes>:

<Li nes>[0] = 'Linel
<Li nes>[1] = 'Line2
<Lines>[2] = 'Line3

Get the current OPUS path using the GetOpusPath command and save it
in <Pat h>.

Expand the <Pat h> variable by the subdirectory “WORK”.

Select the TextToFile command from the Special Macro Commands dia-
log box. Fill in the following text:

Path <Pat h>
File Name “ Text.txt”
Text <Li nes>[0]

Output Option “REPLACE_TEXT”

REPLACE_TEXT generates a new file or overwrites an existing one
with the same name.

Repeat these steps twice, each time incrementing the array counter of
the <Lines> variable. Instead of “REPLACE TEXT” use
“APPEND_TEXT” to append these linesto thefile.

Append the ReadTextFile command to read the text file. In the Text File
Name field, enter '<Path>\test.txt’. Specify <Text > to hold the return
value.

Use the GetArrayCount command to determine the number of elements
contained in <Text >; saveit in <Count >.

Start aloop using <Count > asloop counter.

Include an array element of <Text > in a message, use <I ndex> as
array index.

Increase <I ndex> by one and close the loop with EndLoop() .

Append the Delete command. Only the path and file name isrequired as
parameter. State the file to be deleted by entering
'<Path>\test.txt’.

Save the macro as “Output 1”.

Listing“OUTPUT 1L.MTX"
VAR ABLES SECTI ON

6-76

OPUS-NT Programming Bruker Optik GmbH

Output 2 — Plotting Spectra

STRING <Path> = "' ;
STRI NG <Li nes> = '’ ;
STRI NG <Text> = '';
NUMERI C <Count >
NUVERI C <I| ndex>

non
> 9

PROGRAM SECTI ON
<Li nes>[0] "Line 1';

<Li nes>[1] "Line 2';

<Li nes>[2] "Line 3’ ;

<Pat h> = Get QpusPath ();

<Pat h> = ' <Pat h>\ WORK’ ;

Text ToFi l e (<Path>, Test.txt, <Lines>[0],
REPLACE_TEXT) ;

Text ToFi l e (<Path>, Test.txt, <Lines>[1],
APPEND_TEXT) ;

Text ToFil e (<Path>, Test.txt, <Lines>[2],
APPEND_TEXT) ;

<Text> = ReadTextFile ('’ <Path>\Test.txt’);
<Count > = Get ArrayCount (<Text>);

StartLoop (<Count>, 0);

Message (<Text>[<lndex>], ON_SCREEN, NO_TI MEQUT);
<l ndex> = <| ndex>+1;

EndLoop (0);

Del ete ('<Path>\test.txt’);

PARAMVETER SECTI ON
Running the Macro

Run the macro from the Macro Debugger. Watch for the three messages that
are displayed.

6.33 Output 2 — Plotting Spectra

Task
We will demonstrate how to plot spectrain different ways. The first command

will plot two spectrain one frame. The second command draws two spectrain
two different frames.

M acr o Functions
UserDialog

This example introduces no new macro functions.

Bruker Optik GmbH OPUS-NT Programming 6-77

How to Write Macros

OPUS Functions

Plot

To plot spectra, we use the OPUS Print Spectra function from the Print menu.

Generating theMacro

1)

2)
3)

4)

5)

6)

Start a new macro and define two FILE variables <File 1> and
<File 2>.

Add a user dialog containing both variables.

From the OPUS Print pull-down menu, choose the Print Spectra func-
tion. Select “FRAMEL.PLE” (from the SCRIPT directory) as template
and[<Fil e 1>: AB] asvariable. Closethe dialog by clicking on Plot.
Asyou can seein the parameter dialog, the parameter PPA itself consists
of a parameter list. You should neither change this parameter nor the
template, because they are linked to each other.

In contrary to al other OPUS commands, Print Spectra alows to print
several spectraat once. If you would like to include two or more spectra
in the same frame, add their namesto the file selection list. Note that the
file names are not separated by commas.

Plot ([<File 1>:AB] [<File 2> AB], {...

In the same manner, add a second Plot command, this time using
“FRAME2.PLE” astemplate. It contains two frames labelled “OBEN”
(upper) and “UNTEN” (lower), between which you switch using the
pull down list. Assign [<File 1>:AB] to “OBEN” and [<File
2>: AB] to “UNTEN". Exit the dialog by clicking on Plot. Now you
see, that in the command line generated this time the file names are sep-
arated by commas, indicating that they will be plotted in different
frames.

Plot ([<File 1>:AB], [<File 2> AB], {...

Save the macro as “ Output 2”.

Listing (OUTPUT 2MTX)
VARI ABLES SECTI ON

FILE <File 1>
FILE <File 2>

AB;
AB;

PROGRAM SECTI ON

UserDi al og (0, STANDARD, FILE:[<File 1>: AB],

FILE: [<Fil e 2>: AB], BLANK, BLANK, BLANK, BLANK, BLANK,
BLANK, BLANK, BLANK, BLANK, BLANK, BLANK, BLANK);

Plot ([<File 1> AB][<File 2>:AB], {PDV="Printer’,
SCP=" C:\OPUS_NT\ Scri pts’, SCN="framel. PLE , PUN="CM,

6-78

OPUS-NT Programming Bruker Optik GmbH

Output 2 — Plotting Spectra

POP=" D: \ OPUS\ Debug\ PRI NTS', POF=" PRI NT. TXT', PDH=0,
PPA=" FRM=1, NPL=0, XSP=4000, XEP=400, YM\=0. 0, YMX=1. 2, ASE=
NO, CWN=NO, CSU=- 200. 0, , COL=, ", PL2=20});

Plot ([<File 1>:AB], [<File 2>.AB], {PDV="Printer’,
SCP=" C:\OPUS_NT\ Scri pts’, SCN="frame2. PLE , PUN=" CM ,
POP=" D: \ OPUS\ Debug\ PRI NTS', POF=" PRI NT. TXT', PDH=0,
PPA=" FRM=2, NPL=0, XSP=4000, XEP=400, YM\=0. 0, YMX=1. 2, ASE=
NO, CWN=NO, CSU=-

200. 0, , COL=, NPL=0, XSP=4000, XEP=400, YM\=0. 0, YMX=1. 2, ASE
=NO, CWN=NO, CSU=- 200. 0, , COL=, ', PL2=20});

PARAVETER SECTI ON
Running the Macro

In OPUS, load two absorption spectra and start the macro. Choose a spectrum
for each FILE variable in the user dialog box and click on Continue. Two plots
will be printed.

Bruker Optik GmbH OPUS-NT Programming 6-79

How to Write Macros

6-80

OPUS-NT Programming

Bruker Optik GmbH

A Basic Program with DDE Communication Capability

7 Writing External Programs

It is not the intention of this manual to provide a general introduction to pro-
gramming. Basic knowledge of the fundamentals of writing programs and
experience in either Basic or C is required. This chapter demonstrates the
design of programs that interact with OPUS, using ssmple examples (which can
also be found on the OPUS CD).

7.1 A Basic Program with DDE
Communication Capability

VisualBasic offers an simple approach to establish DDE communication,
because DDE functionality has been implemented in certain elements. Further-
more, graphical user interfaces can easily be generated in VisualBasic.

This example can be found on your OPUS CD as Forml.frm (program) and
OPUSFrontEnd.vbp (project file).

The form consists of three buttons (Take Reference, Measure Sample and Exit)
and a text box called ddeLi nk, which supplies the communication and is also

used for text output.
w, OPUS Front-End M= E3
.................. w g
Take Reference
Measure Sample al =

Figure 55: File Form1

7.1.1 Initializing the Connection

The Load function (For m Load) serves to interpret a parameter, which con-
tains atext command, as a program that is to be launched. Thisfunctionality is
used in the Basic program to start OPUS. The function connect ToSer ver

opens the connection to OPUS.

Bruker Optik GmbH OPUS-NT Programming 7-1

Writing External Programs

Option Explicit

Di m connected As Integer
DmtimeCut As Integer
Di m server Nane As String

Private Sub Form Load()
D m Bef ZI
timeQut = 6000 ' in ~ tenths of a second
connected = 0
Bef ZI = Command()
If Len(Befzl) > 0 Then
Shel | (Befzl)
End If
server Name = "OPUS| Syst ent
connect ToServer (server Nane)
End Sub

Its main purpose isto initialize the DDE functionality of the ddeLi nk text box
object. FirsttheLinkModeissettovbLi nkNot i fy, whichisthe asynchronous
mode (the Basic program does not pause). As soon as a command was pro-
cessed by OPUS, the Li nkNot i fy event of the ddeLi nk object will be acti-
vated. In genera, this has proven to be useful, because otherwise the Basic
program will wait for a result to be returned and in the meantime will not pro-
cess any input (e.g. like Cancel). By setting the Li nkTopi ¢ to OPUS|Syst em
the Basic program rgistered a connection from the system with the given name.
If OPUS has been running, it has requested a DDE service using this name and
will function asa server. In addition, the Li nkTi meout isdefined.

Publ i ¢ Function connect ToServer (server As String) As
| nt eger

connect ToServer = 0

On Error GoTo connect ToServerErr

ddeLi nk. Li nkMode = vbLi nkNoti fy

ddeLi nk. Li nkTi neout = 100 ' give tine for connection
ddeLi nk. Li nkTopi ¢ = server " Set link topic.

ddeLi nk. Li nkTi meout = timeQut

connect ToServer =1

connected = 1

ddeLi nk = "Connected to " + server

Exit Function

connect ToSer ver Err

connected = 0

ddeLi nk = Err.Description

Exit Function

End Functi on

7.1.2 Processing the Commands

Both routines, which are started by pressing one of the buttons have a similar
design. Important is the Linkltem, which is used to transmit a command to
OPUS as text. In this case it is ether TAKE REFERENCE or
MEASURE_SAMPLE. Both commands expect the name of an OPUS experi-
ment file, which defines the type of experiment.

-2

OPUS-NT Programming Bruker Optik GmbH

A Basic Program with DDE Communication Capability

Private Sub Reference_Cick()
On Error GoTo requestErr

ddeLi nk. Li nkl t em = " TAKE_REFERENCE xxx. xpni
Exit Sub

request Err:

ddeLi nk = Err.Description
Exit Sub

End Sub

Private Sub Sanple_Cick()
On Error GoTo requestErr

ddeLi nk. Li nkl tem = " MEASURE_SAMPLE xxx. xpm'
Exit Sub

request Err:

ddeLink = Err.Description
Exit Sub

End Sub

7.1.3 Notification and Result

The Li nkNot i fy routine is called as soon as OPUS has processed the com-
mand and supplies the result.

The Li nkRequest cal instructs OPUS to transfer the result to the ddeLi nk
object. Here, the result will only be displayed in the text box. Thiswould also
be the handle for a data processing routine.

If a sample measurement has been started, the spectrum will be sent in the form
of adata point table.

Private Sub ddeLi nk_Li nkNotify()
On Error GoTo requestErr

ddeLi nk. Li nkRequest

Exit Sub

End Sub

7.1.4 Error Handling

OnEr r or Got 0 has already been used in the routines described above. If the
connection should terminate or if an error occurs, the sub routines for the
respective events is caled. In our example, the messages will only be dis-

played.
Private Sub ddeLi nk_Li nkC ose()
ddeLi nk = "Connection cl osed"
connected = 0
End Sub

Bruker Optik GmbH OPUS-NT Programming 7-3

Writing External Programs

Private Sub ddeLi nk_Li nkError(Li nkErr As Integer)
Sel ect Case LinkErr

Case 1
ddeLink = "Data in wong format."
Case 11
ddeLink = "Qut of nmenory for DDE."
End Sel ect
End Sub

7.1.5 Program Termination

Upon termination, the form will be unloaded; in our example the unload func-
tion also illustrates the possibility to close OPUS.

Private Sub Exit_Cick()
Unl oad For ml
End Sub

Private Sub Form Unl oad(cancel As Integer)
On Error GoTo requestErr

ddeLi nk. Li nkExecut e " CLOSE_OPUS"
Exit Sub

request Err:

ddeLink = Err.Description
Exit Sub

End Sub

7.2 A C Program Using the Pipe Interface

The ability of OPUS to function as a server can be used by client software to
exchange data and parameters or to control macros. One route to exchange data
is the use of a Named Pipe, which is a dedicated operation system function for
datatransfer. The advantage in using a Named Pipe isthe fact, that the pipe can
be treated like any file system object. Pipes can be opened, closed, read from,
and written to similar to files on ahard drive. These functions are embedded in
amost any programming language (C: f open and f cl ose, Basic and Fortran:
open and cl ose).

Furthermore, Named Pipes are supported by severa network operating systems
(like Novell, LAN Server, Windows for Workgroups, Windows NT and OS/2
Warp Connect). In principle, such a client program is able to run on a LAN
machine, even if an operating system other than Windows NT is running.

The following program exists aso in a similar version for OS/2; a comparison
of both versions outlines the Windows NT specific items.

7-4

OPUS-NT Programming Bruker Optik GmbH

A C Program Using the Pipe Interface

7.2.6 Establishing a Connection

Besides the declaration of variables, the first part of the program mainly serves
to establish a Named Pipe connection. First, the name of the Pipeis determined.
OPUS opens a Pipe with the name of the program that was launched. This
name can be accessed asar gv[0] and will be added to \.\\PIPE\.

Then aloop tries repeatedly to open the Pipe, using the f open command. If a
connection could not be established, the loop will be terminated after a pre-
defined amount of time and the program stops.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <mat h. h>
#i ncl ude <time. h>

i nt mai n(int argc, char **argv){
fl oat *dat a;

FI LE *opuspi pe;

char buf fer[255] ;

char fil ename[255] ;

char bl ockt yp[255];

char pi penane[255] ;

char *prognane;

| ong i, nunofpoints, entrynum
doubl e fregfirstp, freqlastp, scalef;
time_t starttine;

avai | =0;

strcpy(pi penanme, "\\\\.\\PIPE\\");
prognane=argv[0]; /* Renobve Path */
if (strchr(prognane,’:"))
prognanme=strchr(prognane,’ :’)+1
while (strchr(prognanme,’ \\"))
prognane=strchr (prognane, ' \\') +1;
st rncat (pi penane, prognane, 255) ;

starttinme=time(NULL);i =0;
while(difftinme(time(NULL),starttine)<tineout){
i++; /* numof tries */
errno=0;
i f ((opuspipe = fopen(pipenane, "rb+")) !'= NULL)
break; }
if(difftime(time(NULL), starttime)>=timeout)
cserror("Timeout - Pipe Open \n");

7.2.7 Client/Server Commands

In the next section of the program, a set of commands is processed, following
aways the same routine. Before a command is processed, the Pipe is reset

Bruker Optik GmbH OPUS-NT Programming 7-5

Writing External Programs

using the f seek command. Then f pri nt writes the command to be transmit-
ted to the Pipe, which is sent immediately by the f f | ush command. Fwai t -
get s transfers the results line by line and also performs an error check.

The program expects a spectrum file indicated on the Sel ect Pr ogr ampage
of the Externa Program function, which will be read by the
READ_FROM_ENTRY command. DATA_VALUES sets the appropriate
mode, and READ_DATA reads the spectral data.

The data will be stored in an array of a size depending on the number of data
points.

entrynum =1; /* The first file selected in the TS
box*/
f seek(opuspi pe, 0, SEEK_SET) ;
fprintf(opuspipe, " READ FROM ENTRY %\ n", entrynun ;
fflush(opuspipe);
fwaitgets(buffer, 255, opuspipe);
if (strcnp(buffer,”"OK\n"))

cserror(buffer); /* CS sent an error code */

fwaitgets(filename, 255, opuspipe);

fwaitgets(buffer, 255, opuspipe);/* contains file num
ber */

fwai t get s(bl ocktyp, 255, opuspipe);

f seek(opuspi pe, 0, SEEK _SET) ;
fprintf(opuspipe, "DATA VALUES\n");
fflush(opuspipe);
fwaitgets(buffer, 255, opuspipe);
if (strcnp(buffer,”"OK\n"))
cserror(buffer);

f seek(opuspi pe, 0, SEEK _SET) ;
fprintf(opuspipe, " READ DATA\n");
fflush(opuspipe);
fwaitgets(buffer, 255, opuspipe);
if (strcnp(buffer,"OK\n"))
cserror(buffer);

fwaitgets(buffer, 255, opuspipe);
sscanf (buffer, "% d", &unof poi nts);
fwaitgets(buffer, 255, opuspipe);
sscanf (buffer,"%f", & reqfirstp);
fwai tgets(buffer, 255, opuspipe);
sscanf (buffer,"%f", & reql astp);
fwaitgets(buffer, 255, opuspipe);
sscanf (buffer,"%f", &cal ef);

if ((data=(float*)nmall oc(nunof poi nts*sizeof (float)))
==NULL)
cserror("Qut of nenory\n");

7-6

OPUS-NT Programming Bruker Optik GmbH

A C Program Using the Pipe Interface

for (i =0; i < nunmofpoints; i++){/*receive the data */
fwaitgets(buffer, 255, opuspipe);
sscanf (buffer,"% ", &atali]);
data[i] *= (float)scalef;}
fwaitgets(buffer, 255, opuspipe);
if (strcnp(buffer,”"OK\n"))
cserror(buffer);

7.2.8 Data Manipulation

After all data has been read from the OPUSfile it is available for processing by
the program. In our example the data will only be mutliplied by 2. After the
data processing, all data will be written back to the same file. The PRESERVE
mode which existed in OS/2, is now obsolete due to the different approach of
Windows NT not to manipulate original data.

WRITE_TO_FILE/BLOCK specifies the block type of the target file and
WRITE_DATA initiates the write process. Because the spectral data file has
been altered by the program, it will be labelled "processed” in the OPUS user
interface; if the file was displayed, the display will be refreshed.

/* mani pul ate the data */
for (i = 0; i < nunofpoints; i++)
data[i]*= 2.0;

/* Now Wite it Back */
f seek(opuspi pe, 0, SEEK_SET) ;
fprintf(opuspipe, "PRESERVE\Nn"); /* will increnent
ext ensi on */
fflush(opuspipe);
fwaitgets(buffer, 255, opuspipe);
if (strcnp(buffer,”"OK\n"))
cserror(buffer);

f seek(opuspi pe, 0, SEEK_SET) ;
fprintf(opuspipe, "WRITE TO FILE %", filenane);/* file-
nane contains end of line char !*/
fflush(opuspipe);
fwaitgets(buffer, 255, opuspipe);
if (strcnp(buffer,”OK\n"))

cserror(buffer);

fwai tgets(buffer, 255, opuspipe);/* contains path +
filename */
fwai tgets(buffer, 255, opuspipe);/* contain fileno */

f seek(opuspi pe, 0, SEEK_SET) ;
fprintf(opuspipe, "WRI TE_ TO BLOCK %", blocktyp);/*
bl ocktyp contains end of line char !*/
fflush(opuspipe);
fwai tgets(buffer, 255, opuspipe);
if (strcnp(buffer,"OK\n"))

cserror(buffer);

Bruker Optik GmbH OPUS-NT Programming -7

Writing External Programs

f seek(opuspi pe, 0, SEEK_SET) ;
fprintf(opuspipe,"WRl TE_DATA\n");
fflush(opuspipe);
fwaitgets(buffer, 255, opuspipe);
if (strcnp(buffer,"OK\n"))
cserror(buffer);

f seek(opuspi pe, 0, SEEK_SET) ;
fprintf(opuspipe, "% d\n", nunof poi nts);
fprintf(opuspipe,"%f\n", freqfirstp);
fprintf(opuspipe,"%f\n",freqglastp);
fprintf(opuspipe,"%f\n", scalef);
fflush(opuspipe);

for (i = 0; i < nunofpoints; i++){
fprintf(opuspipe,"%\n",data[i]); }

fflush(opuspipe);

fwaitgets(buffer, 255, opuspipe);

if (strcnp(buffer,”OK\n"))
cserror(buffer);

free(data);

fcl ose(opuspi pe);

return (0); }

7.2.9 Reading Data from the Pipe

The program usesf wai t get s to read aline of data. However, this can pose a
problem, if the complete data set is not yet available or if not al characters have
been transferred. Especially a data request happening too early could cause the
program to hang, regardless whether the data is being written to the pipe on the
server side.

In this aspect the following code is more robust, but requires the use of Win-
dows NT system calls. Because a Pipe is opened similar to afile, avariable of
type FILE is used in C to access the Pipe. However, API functions use a sys-
tem-specific handle instead of thistype. First of al, one hasto find out the han-
dle of the FILE variable. The API function PeekNanmedPi pe checksif the data
isalready available. If so, get ¢ isused to read the data; otherwise, the routine
times out.

#i ncl ude <w ndows. h>
typedef struct {

| ong osf hnd; /* underlying OS file HANDLE */

char osfile; /* attributes of file (e.qg.,
open in text node?) */

char pi pech; /* one char buffer for handles

opened on pipes */
#i f defined (_Mrm)
int lockinitflag;
CRI TI CAL_SECTI ON | ock;

7-8

OPUS-NT Programming Bruker Optik GmbH

A C Program Using the Pipe Interface

#endif /* defined (_MI) */

} i oi nfo;
extern CRTIMP ioinfo * _ pioinfo[];
#define 1 O NFO_L2E 5

#define 1 O NFO ARRAY_ELTS (1 << I O NFO_L2E)
#define _pioinfo(i) (__pioinfo[i >> 1O NFO L2E] + (i
& (1 O NFO_ARRAY_ELTS - \
1)))
#define _osfhnd(i) (_pioinfo(i)->osfhnd)
#define _fileno(_strean) ((_stream->file)

#define timeout 200.0
static int avail;

voi d cserror(char *errortext)
{

fprintf(stderr, errortext);
fflush(stderr);

exit(3);

}

char *fwaitgets(char *buf, size_t n, FILE *opuspipe){

size_t i, j;
time_t startzeit;

i =0;
startzeit=time(NULL);
for (i=0;i<n;i++){
if (avail= =0){
do{
i f
(! PeekNanmedPi pe((HANDLE) osf hnd(_fil eno(opuspi pe)),
0, 0,0, &vail,0)){
LPVA D | pMsgBuf ;
For mat Message(
FORVAT_MESSAGE_ALLOCATE_BUFFER |
FORMVAT_MESSAGE_FROM SYSTEM
NULL, Get Last Error (), MAKELANG D
(LANG NEUTRAL, SUBLANG DEFAULT), // Default |anguage
(LPTSTR) & pMsgBuf, 0, NULL);
strcpy(buf, | pMsgBuf) ;
Local Free(l pMsgBuf);
return (buf);}}
while ((avail ==0)&&(difftime(time(NULL),
startzeit)<tinmeout));
if(difftine(tinme(NULL), startzeit)>=
ti meout) {
strcpy(buf, " Ti neout\n");
return buf;}
el se{
buf [i] = fgetc(opuspipe);
avail --;

Bruker Optik GmbH OPUS-NT Programming 7-9

Writing External Programs

startzeit=time(NULL); }}
el se{

buf[i] = fgetc(opuspipe);
avail - -;
startzeit=time(NULL);}
if (buf[i]=="\n"){

i ++;

break; }

}
buf[i]=0;

return (buf);}

7.2.10 Changes compared to OPUS-0OS/2

The last example already pointed out some changes to programs running on
0s/2:

* Changesin the Pipe name

» theuseof f seek, when switching between read and write
» checking for data with the PeekNarmedPi pe function

» changesin the handling of modified datafiles

* eror messages have changed dightly and are no longer language-
specific.

7.2.11 Miscellaneous

A specific Program Pipe will be created every time an external program is
launched from the OPUS user interface with the option Run as OPUS task set.
If this option was not chosen and the program was started using a Pipe, OPUS
opens a general Server Pipe named "\\.\PIPE\OPUS" and waits for the external
program to connect (this is the reason the OPUS Pipe function has to be started
first). After the external program has connected to the Pipe, the connection is of
the same quality as a Program Pipe. This type of connection can be used to
remote-control OPUS.

To avoid conflicts between several programs running at the same time, OPUS
uses the program name as Pipe name.

Note: If you rename the program, the Pipe name will also change!

| dentifying the Pipe name during the run time of your program (using a system
function) therefore ensures higher stability.

If Pi pe was selected as communication method, OPUS expects your program
to open the Pipe; otherwise an error message will be the result. OPUS closes
the Pipe as soon as your program terminates the connection (end of program or
connection failure).

7-10

OPUS-NT Programming Bruker Optik GmbH

A C Program Using the Pipe Interface

It is not recommended to open several Pipes by the same program, for example
by starting the same program more than once. The result would be several
Pipes with the same name.

In principle, a connection via a network is possible. In this case, the computers
network name has to be used instead of the decimal in the Pipe name:

\'\ OPUSPQC\ PI PE\ OPUS
would be the Pipe name of OPUS server on the computer OPUSPC.

READ_DATA and WRITE_DATA in binary mode remain the only commands
that send binary data and do not use text with an End of Line sequence.

If a command received by OPUS is recognized, OK will be returned and the
command will be processed (often causing additional data exchange). If the
command is not recognized by OPUS (or if arguments are missing), an error
message will be returned and OPUS waits for anew command. Thisisthe rea-
son why, after sending a command to the Pipe, the externa program should
always read a line from the Pipe to ensure that the command has been pro-
cessed. Certain commands will cause more text to be returned, that also has to
be read.

Bruker Optik GmbH OPUS-NT Programming 7-11

Writing External Programs

7-12 OPUS-NT Programming Bruker Optik GmbH

VisualBasic Script

Creating Scripts

In this section you will learn more about the OPUS Scripting Editor. All of the
examples discussed in this chapter are included on the OPUS CD. The scripts
are written in VBScript and show how to call OPUS functions, start a measure-
ment, access spreadsheets and OPUS data files or how to work with timers and
DDE communication. Make sure you are granted the right to work with Visual-
Basic scripts (see User Settings dialog).

8.1 VisualBasic Script

A script always consists of aform and program code. The form and the control
elements are configurable and are associated to program routines. The first
example (first.obs) shows how to process a data file and assign a button to this
routine.

8.1.1 Generating Forms and Buttons

Open the Scripting Editor as described in chapter 1.3.3. Click on the button
icon of the Toolbox to activate the CommandButton function. Hold down the
left mouse key on the form and move the mouse to create a rectangle for the
button you want to include. Upon releasing the mouse key, the button will be
inserted at this position. Y ou can reposition it by left-clicking on it and moving
the mouse; to resize the button, click on the small squares on its border.

If you right-click on the button, you open a pop-up menu through which you can
access the Properties dialog of the button. Through this dialog, the properties
like color and font of the control element can be changed. Enter the text which
you would like to be displayed on the button in the Caption field. Pressing
Apply confirms these changes.

Bruker Optik GmbH OPUS-NT Programming 8-1

Creating Scripts

P__ﬁ' First.obs =] B3
L i ' Properties
Apply |||3.:.
L Go =1
Vizible 1-True =l BEl—
il e | Accelerator e
C o lAutoSize 0-Falze u
: o |BackColor 00c0c0c0 A|EH
o EackSt_l,lle 1 - Opague e
B [aption B = =
. . .|Enabled 1-Te i
- . . |Font MS Sans Serf —ti|abl
. - |ForeColor Q0000000 i I:/-p
A ITs] CommandButtonl = L
Locked 0-Falze
aooooo M ouzelcon [Mone)
= e |_'1:_'|_é|| En:-]l@l M ouzePairter 0 - Default
Pirhare [Mrrel LI

Figure 56: Creating a Button

8.1.2 Objects and Events

In the next step a sub routine will be linked to an event of the button you have

just created. Switch to the code window by clicking on the x| icon. You will
be presented with an empty work space and two drop-down lists. The left list
already contains available objects including the entry CommandBut t on 1.

o] [l

Object: IEDmmandEuttnMJ Events: j
‘CommandButton]

Figure 57: Scripting Editor — Object List

82

OPUS-NT Programming Bruker Optik GmbH

VisualBasic Script

From the Event list on the right side you can choose the events associated with
the button. Select the event you want to assign to a sub routine An event rou-
tine code will be included (here the routine for the event cl i ck, representing a
mouse click). A comment in the code indicates, were you have to include addi-
tional statements.

EE!First.obs M=l E3
Object: IEDmmandButtnn'lj Ewents: |Click j
BeforeliragOwer -

BeforeDroplrPaste

SR ortnandButtonl Click
"add wour event handler |DbIClick
End Sub Errar =

___|
Figure 58: Scripting Editor — Program Routine of the Event Click

The routines to be performed upon this mouse click are to be called by the event
routinecl i ck. Incase OPUSIisto process afile, the OQpus Conmand function
isto be used, that forwards the text commands to OPUS:

Sub CommandButtonl_C i ck
For m QpusCommand(" Basel i ne
([""E:\opus\data\abboe05.0""],{})")
End Sub

Note the double hyphenation within the command. Thisis caused by the fact,
that the file name has to be enclosed in hyphens, but the script aso uses hyphens
to indicate text.

Now start the program by clicking on ; the form will be displayed, and the
Go button isactive. If you click onit, OPUS will perform a baseline correction.
If no datafile has been loaded so far, OPUS loads the file automatically. Switch

back to the editing mode by clicking on ﬁl . Save your work under any name
but with the extension .obs (OPUS Basic Script), using the Save command in
the File menu.

The user right to modify scripts can be assigned in the User Settings dialog; if
this right was not granted, the user is able to only run the script and is able to
perform only the actions defined by the script.

Bruker Optik GmbH OPUS-NT Programming 8-3

Creating Scripts

8.1.3 OPUS Functions

Any OPUS function can be included in a text as shown in the example above.
Because of the complexity of the functions and function arguments, a shortcut
exists to define OPUS functionsin a script.

Position the cursor in the section of the code, where you wish to include the
function; then smply start the function from the OPUS tool bar of the user
interface. A dialog differing dlightly from the regular one will be displayed.
Instead of the usual file selection box, you see an entry field, in which you can
enter the file parameter to be used in the script. Clicking on Correct will result
in the insertion of the OPUS function into the script.

B8 First.obs M=l 3
o) Baseline Comection |_
Object: IEnmmandButton'I VI Events: Iﬁ Select Files |Se|ectMeth0d|

) : LTy

Sub ComrandButtonl Click — Filefz] to Comect

I 'add your ewvent handler he: g .
\opus\data\abboe05.0 -
I |"*E-\opusidatal i =l
Corect Cancel HE

Figure 59: Including an OPUS Function

All parameters of the OPUS function can be defined as usual on the dialog
pages. They will be translated to code and appear in the script.

8.1.4 Performing Measurements

The graphical user interface generated by the Basic program in chapter 4.1 can
also be generated in a script. Create three buttons and label them Reference,
Measure and Cancel, as well as atext box for text output.

Set the parameter Mul ti Li ne of the text box Properties to t r ue, to ensure,
that long text output will be written line by line. The part of the Basic program,
which handles the DDE communication can be omitted in the script. The script
is terminated with the function d ose:

Sub ConmandButtonl_dick

For m QopusCommand(" TAKE_REFERENCE xxx. xpmni')
End Sub

84 OPUS-NT Programming Bruker Optik GmbH

VisualBasic Script

Sub CommandButton2_C i ck
For m QousComrand(" MEASURE_SAMPLE xxx. xpni')
End Sub

Sub CommandButton3_C i ck
Form Cl ose
End Sub

Sub Form OnQpusResul t(ByVal strResult , ByVal

mstrResult2 , ByVal mstrResult3 , ByVal mbinData)
Text Box4. Text = strResult + mstrResult2 +
m strResul t3

End Sub

The script makes use of another form function: if a command is processed, the
function OnOpusResult will be called, which is an element the form. The result
of the OPUS command will be forwarded to this routine and in this example
will be written astext to the text box. In case of aterminated measurement this
could look like:

B8 messen.obs [_ (O]

ok

Feference Result File: 30

"EAOPUSADEBUGNMESS

WWORK148.0M1

Elock: AR

: Wavenumber crm-1

Meazure Abzorbance Units
Fuoints: 1568

39933.64 -1.2343e-006

399771 -5.53956.-00k

399578 1. 26322e-005

Cancel 3993.85 -3 54623005

3991.93 -5.71525=-005

Q0N © 24 IIEA~ NNFE

..

Figure 60: Text Box Messen.obs

The resulting data file consists of a header, comprising the file name, a number,
the data block type, and the x and y axis units and the data points.

8.1.5 Accessing Spreadsheets

The following example illustrates how OPUS data can be exported to an Excel
spreadsheet. The Excel program must be installed on your computer. The pro-
gram is started by the script with the Cr eat eObj ect (" Excel . Sheet ") call;
the following command activates the program, which so far is running as a
background task, and Cel | s addresses the Excel table cells.

Bruker Optik GmbH OPUS-NT Programming 85

Creating Scripts

Di m Excel Sheet

Sub ConmandButtonl_dick
Set Excel Sheet = Createbject (" Excel. Sheet")
Excel Sheet . Application.Visible = true
Excel Sheet. ActiveSheet.Cells(1,1).Value = "Hello
Wor | d"

End Sub

Further information about which objects and functions (e.g. in Word) are acces-
sible in this way, can be found in the documentation of the Microsoft Office
package.

8.1.6 Repeated Calls Using a Timer

A timer object is used to control timed events. While the timer is not visible
during run time, it triggers events after a preset amount of time has elapsed.
The timer object is placed in the form and the time interval is set in millisec-
onds.

In the following example, the graphic output of the Infometrix software InStep
will be called repeatedly. This also demonstrates how to use the External Pro-
gram function to establish a DDE connection. Because DDE communication is
not supported in scripts, the OPUS function is used in its text command form.

The file ddetest.obs can be found on your OPUS CD; to use the script, you need
the InStep software and you have to adjust the path to reflect your environment.
The form consists of two buttons to start and stop the repeated addition of data.

Di m comand
Sub CommandButtonl_C i ck
command =1
For m QpusComand(" Ext er nal Pr o-
gram 0, { XPR=F: \i nst ep\i nst ep. exe, XST=2, XCW0,
DDE=0}) ")
End Sub

Sub Timer1_Ti mer

command=2

For m QpusComand(" Ext er nal Progr an(0, { XST=3, DDE=1,
DDS=I NSTEP, DDT=DATA, DDI =Macr oFi | e,
DDD=""f:\instep\exampl es\plat.stp""})")
End Sub

Sub ConmandButton2_d i ck
Tinerl. I nterval =0
End Sub

Sub Form OnOpusResul t (ByVal strResult , ByVal
mstrResult2 , ByVal mstrResult3 , ByVal mbinData)
if command =1 then
For m QpusConmand(" Ext er nal Pr ogr am(0, { XST=3,
DDE=1, DDS=I NSTEP, DDT=DATA, DDl =Dat aFil e,

8-6 OPUS-NT Programming Bruker Optik GmbH

VisualBasic Script

DDD=""f:\i nst ep\ exanpl es\ gasoline.dat""})")
Timerl.Interval = 10000
command =3
end if
if command =2 then
For m QpusConmand(" Ext er nal Pr ogr am 0, { XST=3,
DDE=1, DDS=I NSTEP, DDT=DATA, DDl =Run, DDD="" ""})")
command =4
end if
End Sub

GO (CommandBut t onl) starts the program (XPR = program name, XST = 2
stands for starting up), and the command Dat aFi | e (DDI) is forwarded to the
InStep server, using the OnQpusResul t routine with the topic (DDT) DATA.
Thisisdoneby aXTYP_POKE cal (DDE = 1), which uses the method name as
aparameter (DDD).

The global variable Command indicates, which command was terminated when
OnOpusResul t is cal. ThefunctionTi mer 1_Ti mer iscalled every 10 sec-
onds and forwards the name of a macro to be executed (DDI = MacroFile). The
InStep macro is started with the DDI = Run command.

Although this example is designed specifically to be used with InStep software,
it points out the possibilities of the DDE functionality, and can easily be adapted
to other software.

8.1.7 Accessing Spectral Data

Often it is desirable to manipulate OPUS data with the help of self-designed
programs. One possibility how to achieve this was shown in chapter 3. The
script RWCSTEST .obs basically makes use of the same command routine as
the C program in chapter 3.

Here, another function (OpusRequest) of the form is used to call OPUS, which
directly returns the result astext. The form consists of atext field for datafile
name entry, another text field for text output, and a button to start the program.

Initialy, the transfer mode is set to allow binary data exchange of type float
(BINARY, FLOAT_MODE, FLOATCONV_MODE). Then, the file name and
the desired data block is specified using the commands READ_FROM_FILE
and READ_FROM_BLOCK. Now, the READ_DATA call to OPUS requires
an additional argument to function as a data field. This is the task of the
OpusRequestData function.

The additional parameter is a Basic array Dat a, that contains the spectral data
upon return. The data field is adjusted automatically to the size of the data
block. Therefore, UBound can be applied to find the number of transferred
data points.

Bruker Optik GmbH OPUS-NT Programming 87

Creating Scripts

Di m dat a(10000)

Sub ConmandButtonl_dick

result = Form QpusRequest (" Bl NARY")

Text Box2. Text = resul t

resul t 1= For m OpusRequest (" FLOAT_MODE")

Text Box2. Text = Text Box2. Text+ resultl

resul t 2= Form OpusRequest (" FLOATCONV_MODE ON')
Text Box2. Text = Text Box2. Text+ resul t2

resul t 3= Form QpusRequest (" READ_FROM FI LE
"+Text Box1. Text)

Text Box2. Text = Text Box2. Text+ result3

resul t4= Form OpusRequest (" READ_FROM BLOCK AB")
Text Box2. Text = Text Box2. Text +result4

result5 = Form QpusRequest (" DATA PO NTS")

Text Box2. Text = Text Box2. Text +result5

result6 = Form QpusRequest Dat a(" READ_DATA", dat a)
Text Box2. Text = Text Box2. Text +result 6

for i =1 to UBound(data)
data(i)= 2*data(i)
next

After data modification, WRITE_DATA writes it back to the file; this shows,
that the process of writing data can be split into several commands.

result7 = Form OpusRequest ("WRI TE_TO FI LE
"+Text Box1. Text)

Text Box2. Text = Text Box2. Text +result7

result8 = Form QpusRequest ("WRI TE_TO BLOCK AB")
Text Box2. Text = Text Box2. Text +result 8

result9 = Form OpusRequest (" WRI TE_DATA")

Text Box2. Text = Text Box2. Text +result9
result10 = Form OpusRequest -

Dat a(CSt r (UBound(dat a)) +chr (10) +" 1" +chr (10) +
CStr (UBound(data)) +chr (10), dat a)

Text Box2. Text = Text Box2. Text +resul t 10

The rest of the script demonstrates, how to access a report block; for this pur-
pose, PeakPick is employed to create a peak table in report format.
REPORT_INFO, HEADER_INFO and MATRIX_INFO determine the dimen-
sions of the report, header and matrix, respectively. The actual elements of the
report are addressed using HEADER_ELEMENT and MATRIX_ELEMENT.

Resul t 13 = Form OpusRequest (" COMVAND LI NE PeakPi ck
(["""+Text Box1l. Text+""": AB], {NSP=9, PSM=1l, WHR=0,
LXP=400. 000000, FXP=4000. 000000, QP8='NO ,

QP9=0. 200000, PTR=20. 000000, QP4="NO , QP7=0.800000,
QP6="NO , QP5=80.000000, PPM=1l, QPO="NO , QP3=4});")
Text Box2. Text = Text Box2. Text +resul t 13

resul t14= Form QpusRequest (" READ_FROM BLOCK AB/ Peak")
Text Box2. Text = Text Box2. Text +result 14

resul t 15= For m QpusRequest (" REPORT_I NFO'")

Text Box2. Text = Text Box2. Text +resultl15

OPUS-NT Programming Bruker Optik GmbH

JavaScript

resul t 16= For m QpusRequest (" HEADER | NFO'")

Text Box2. Text = Text Box2. Text +resultl16

result17= Form QpusRequest (" MATRI X _| NFO')

Text Box2. Text = Text Box2. Text +resultl17

resul t 18= Form OQpusRequest ("MATRI X_ELEMENT 1 0 1 1")
Text Box2. Text = Text Box2. Text +result18

resul t 19= For m QpusRequest ("HEADER _ELEMENT 1 0 1")
Text Box2. Text = Text Box2. Text +resultl19

End Sub

Sub For m OnLoad
Text Box1. Text = "E:\opus\dat a\ abboe05. 0"
End Sub

8.2 JavaScript

Although the Scripting Editor was intended for writing VisuaBasic scripts, it
can be used as well to generate Java scripts. Therefore, the parameter
ActiveEngine of the forms Properties dialog has to be set to JScript.

Writing Java scripts works the same way as writing VisualBasic scripts, you
just have to take into account the specific Java commands. The procedures for
calling OPUS functions from within a form are identical. The declaration of
functions is dightly different, as you can see from a comparison of the follow-
ing code (JSCRIP1.0BS).

Java
functi on CommandButtonl:: Cick()
{
For m QpusConmand(" NEW W NDOW 0")
}

VisualBasic:

Sub ConmandButtonl_dick
For m QpusComrand(" NEW W NDOW 0")
End Sub

Bruker Optik GmbH OPUS-NT Programming 89

Creating Scripts

8-10 OPUS-NT Programming Bruker Optik GmbH

VARIABLES Section

Macro Command Reference

This chapter describes all special macro commands. The commands are classi-
fied by functionality. You will find an aphabetically sorted list of al com-
mands in section 9.4.

An OPUS Macro consists of three sections, each of which must be present in a
macro, even if the sections are empty. Every section begins with its own
header:

VARIABLES SECTION
PROGRAM SECTION
PARAMETER SECTION

9.1 VARIABLES Section

This section is reserved for the variable declaration in amacro. Only one dec-
laration per lineisalowed. Each line must be terminated by a semicolon. Vari-
ables can be of different type. The syntax of the declaration depends on the
variable type and is explained in the following sections. STRING, NUMERIC
and BOOL and FILE variables can hold asingle value aswell asan array of val-
ues.

General Syntax:

Type <Name> = Value;
Typekeyword for the variable type.
<Name>variable name.
Valueinitia value of the variable.

Variable values can be changed while running a macro in different ways:

* by entering anew value in a user dialog box.

» by calculating a new value using an expression.

* by reading avalue from a parameter of a spectrum.
* by reading avalue from an info block.

* by reading avalue from areport.

» by assigning a value using a macro command.

Bruker Optik GmbH OPUS-NT Programming 9-1

Macro Command Reference

Example:

For array type variables the following additional possibilities exist:

» read atext file (each lineis one array element).
» scan adirectory (each file name isone array element).
» read the parameter values for some of the measurement parameters.

It is possible to assign avalue for an array element without initializing the array
elements prior to the selected element. All array elements with lower indices
will then be initialized with default values (0 for NUMERIC, BOOL and empty
strings for STRING type variables).

<Var>[3] = 123;

if thisis the first assignment for this variable the elements 0, 1 and 2 will be
automatically set to O.

Usualy, the initial value of a variable is declared in the VARIABLES section
and will be used whenever a macro is started. Some applications require to
revoke any changes made to a variable during the last macro run. This can be
achieved by marking the variable.

9.1.1 Variable Types

Five different variable types exist:

STRING for any string.

NUMERIC for numerical values, double-precision.

BOOL can have the values TRUE or FALSE.

FILE represents afile for processing functions.

BUTTON command button used for flow control in user dialog boxes .

" This variables cannot be used as array variable.

9.1.2 Variable Declaration for STRING, NUMERIC and
BOOL

The variables must be declared according to the following syntax:

Type <Name>; declares and initializes a variable with the default
values (Numeric = 0, String = empty,
Bool = FALSE).

Type <Name> = Value; declares and initializes a variable with avalue.

Type <Name> ='Value';

Note: string values must be enclosed by single quotes.

9-2

OPUS-NT Programming Bruker Optik GmbH

VARIABLES Section

Examples:

Examples:

Type Is the keyword to specify the variable type.

Name is the unique variable name.

Value Isthe start value for the variable.

NUMERI C <l ndex>; The numeric variable <l ndex> will be

initialized with avalue of zero.

NUMERI C <Loop Count > = 10; Blanks are allowed in variable names;
LoopCount isset to “10”.

STRING <Titl e>; The string variable <Ti t | e> isinitialized
as empty string.

STRI NG <Pat h> = ' d:\data’; Donot forget to use single quotes for string
variable values.

BOOL <Pl ot ?> = TRUE; BOOL types are used for making deci-
sionsin amacro.

Note: The declaration stays the same for variables used as an array type but the
array values must be set within the PROGRAM section.

Usage of variables: Simply use the name of the variable enclosed in brackets
< >,

9.1.3 Variable Declaration for FILE

The declaration of file variables is almost identical to the other variables.
Required data blocks can be specified by assigning them to the variable name.

FILE <Name> = Blockl, Block2, ...; declares a file variable with different

data blocks.

Name is the name of thefile variable.

Block n is the name of the data block.

FI LE <l nput File>; declares the file variable “Input
File’” without specifying a data
block.

FILE <Input File> = AB; declares the file variable “Input
File’ with a single absorbance-
block block.

Bruker Optik GmbH OPUS-NT Programming 9-3

Macro Command Reference

Example:

Example:

FILE <Input File> = AB, AB/ Peak; declares the file variable “Input
File’ with at least one absor-
bance block and a peak table of
this block.

A file expression is enclosed in square brackets and consists of the variable
name, a colon and the block type.

Print ([<lInput File>: AB/ Peak]); this is how the file variable is
used in acommand.

914 Variable Declaration for BUTTON

The use of aBUTTON variable is restricted to user dialog boxes. It isused to
jump to a predefined label in the macro when the button is clicked. The declara-
tion therefore requires a Goto statement to alabel i. e. the line indicator for the
jump.

BUTTON <Name> = Goto (Label); declares a button variable with its
jump label.

Name is the variable name and at the same
time the text displayed on the button
in the dialog.

Label is the line where the macro execution
continues.

Note: Neither the name of the button nor the label for the jump can be changed
while executing the macro.

BUTTON <Pl ot> = Goto (Pl ot Spectrum;

9.1.5 Marking a Variable for Update

Values assigned in the variables section are the initial values whenever a macro
is started.

Some cases require, that the variables changed during a run are stored as new
initial values for the next run of the macro. You can do this by marking a vari-
able by a preceding “*”. After executing a macro or by using the macro com-
mand “SaveVars’, all marked variables are updated to keep their last value.
Only variables of type STRING, NUMERIC and BOOL can be marked.

OPUS-NT Programming Bruker Optik GmbH

VARIABLES Section

Example:

Example:

Example:

*STRI NG <Text 1> = ’Initial Text’ ;thisvariable
<Text 1> = 'New Text’; will be updated to 'New Text’
*STRI NG <Text 1> = ' New Text’; and after running the macro, the

above line will read.

9.1.6 Special Characters

Some characters in the macro system are used as control charactersin command
lines (e.g. {}[]). With two exceptions these characters can be used as al other
characters aslong as the text is enclosed in single quotes (e.g. ‘123 [g]’).

Exceptions:
Smaller/greater sign “<” and “>” (are used to mark variables)
Single quotes (are used to enclose strings)

To uses these characters within atext line simply enter them twice

Toprint atextlike 123 <345 enter: ‘123 << 345’
Toprint atextlike Resultis'123 enter: ‘result is*’123'"’
Square brackets (are used to access array elements)

If used within atext ssimply type a single character:
Toprint atextlike 123([(] enter: ‘123 [g]’

In case a variable within a string is followed by square brackets the variable is
interpreted as array index, if the leading bracket immediately follows the vari-
able declaration (<Text>[(Q]). If ablank isinserted between the end bracket “>”
of the variable and the leading square bracket (<Text> [0]), the bracket is inter-
preted as text!

Two expressions <Text>[0] = ‘ABC’ and <Text>[1] = ‘XYZ' result in the fol-
lowing combinations:

‘<Text>[0] and <Text>[1]’ isshown as ABC and XYZ

‘<Text> [0] and <Text> [1]’ isshownasABC [0] and XYZ [1]

Bruker Optik GmbH OPUS-NT Programming 95

Macro Command Reference

9.2 PROGRAM Section

The PROGRAM section is the part of the macro, where command lines are
stated. Command lines can be native OPUS Commands, special macro com-
mands or variable assignments.

9.2.1 General Command Syntax

The PROGRAM section consists of several program lines, terminated by semi-
colons. Each individual line consists of at least three parts:

CommandName (Argument 1, Argument 2,);

CommandName is either a native OPUS command or a special macro
command.
Argument n command arguments; the argument list is enclosed by

brackets and the number of arguments depends on the
command. Even if a command requires no arguments
the brackets have to be present.

Semicolon The command line must be terminated by a semicolon.

Some Commands are used to assign values to variables. These commands are
preceded by the variable name followed by an equals sign.

<Variable> = CommandName (Argument 1, Argument 2,);

<Variable> the name of the variable to be assigned a value. The
variable type depends on the command.

9.2.2 Command Names

Command names can either be native OPUS Commands or special macro com-
mands. The commands are listed and described in detail in this chapter and
chapter 10.

9.2.3 Command Arguments

Command arguments are necessary to forward specific command parameters to
acommand. These arguments can be of different type, depending on the pur-
pose of the command:

Text or Numbers

Any text or numbers are forwarded to the command, either as fixed values or as
variables.

9-6 OPUS-NT Programming Bruker Optik GmbH

PARAMETER Section

Example:

Keywords

Keywords are specific instructions required for a command. Keywords are
always printed in capital letters, e. g. the time behavior of a message is deter-
mined by the keyword NO_TIMEOUT.

File

A file argument forwards the file, which is to be processed to the command. A
file argument is always enclosed in square brackets and requires the name of the
file variable and (separated by a colon) the name of the data block.

[<variable name>:Blocktype]

[<Input File>: AB] or [<Result>: AB/ Peak]
Parameter List

This argument type is mainly needed for OPUS commands and is required, if
parameters must be changed during macro execution. A parameter list is
enclosed in braces. For each parameter in the list, the three letter parameter
name and the parameter value is separated by an equals sign. The parameter
values can consist of constants or variables. The different parameters are sepa-
rated by commas.

{PA1=Vauel, PA2=Vaue2, PA3=Value3, ...}

Return Value

Some commands (e.g. the “Measurement” or the “Load” function) return a
value, which has to be assigned to a variable.

These command are preceded by the variable name and an equals sign:

<Variable Name> = Command (Argument 1, Argument2, ...);
[<Variable Name>:Block 1D] = Command (Argument 1, Argument2, ...);

9.3 PARAMETER Section

The section marked PARAMETER SECTION contains a list of all necessary
function parameters for the OPUS functions used in a macro, which are not
included in a command line If thislist is empty or if parameters are missing,
they will be taken from a default parameter set. Since these parameters can be
changed while working with OPUS, results of macros may be unpredictable.

Bruker Optik GmbH OPUS-NT Programming 97

Macro Command Reference

Macros generated automatically by either using the interactive macro editor or
by conversion from OPUS-OS/2 macros, will include all required parametersin
the single command line and an empty PARAMETER SECTION. For macros
written with atext editor, the author is responsible for manually adding a com-
plete parameter set either in the command line or the PARAMETER SECTION.

Syntax:

Name=Value,

Name three letter parameter name.
Value default parameter value.

String values must be enclosed by single quotes.

9.4 Macro Functions Sorted Alphabetically

C

CallMacro run a sub macro

Copy copies one or more files

D

Delete deletes one or morefiles

DisplaySpectrum shows a spectrum on the screen

E

Else indicates the point to continue processing after an If
statement was FALSE

Endif closesan If statement

EndLoop marks the end of aloop

Expressions use a mathematical expression to assign avalue
to avariable

F

FindString searches text within another text

FromReportHeader ~ reads avalue from a report header

FromReportMatrix reads avalue from a report matrix

G

GetArrayCount retrieves the number of elementsin an array

GetEnumList reads possible parameter values of optics parameters

OPUS-NT Programming

Bruker Optik GmbH

Macro Functions Sorted Alphabetically

GetDisplayLimits

GetLength
GetMacroPath
GetOpusPath

GetParameter

GetTime
GetUserPath

GetVersion
Goto

L

Label
LoadFile

M
Message

O

OpenDisplayWindow

P

PrintToFile

R
ReadTextFile
Rename

S

SaveVars
ScanPath

SetDisplayLimits
StartLoop

retrieves the current display limits of the macro display
window

retrieves the length of a STRING variable

retrieves the path of the current macro

retrievesthe current OPUS path and assignsit to astring
type variable

reads an OPUS parameter from a spectrum file

gets system date and time

retrieves the current User path and assigns it to a string
type variable

returns the current OPUS version

instruction to go to a specified label

checks alogica expression and act depending on the
result

jump address within a macro
loads a datafile

shows a message on screen

opens a new window for all result files

writes aline of text into a specified text file

reads the contents of atext file and writesit into an
array variable (type STRING)
renames one or more files

updates all selected variables

searches all selected files within a directory and saves
their namesin an array variable (type STRING)

sets the frequency limitsin a display window

marks the begin of aloop

Bruker Optik GmbH

OPUS-NT Programming 99

Macro Command Reference

StaticMessage shows a permanent message box during execution of a
macro

T

TextToFile writes atext lineto atext file

Timer instruction to achieve time control within a macro

U

UnDisplaySpectrum hides a spectrum
UserDialog shows a user-defined dialog box

9.5 Functions Sorted by Categories

Macro commands are available for the following categories:

System Functions

GetOpusPath retrieves the current OPUS path and assignsit to astring
type variable

GetUserPath retrieves the current user path and assignsit to a string
type variable

GetMacroPath retrieves the path of the current macro

GetVersion returns the current OPUS version

GetArrayCount retrieves the number of elementsin an array

GetLength retrieves the length of a STRING variablen

FindString searches text within another text

CallMacro runs a sub macro

SaveVars updates all selected variables

Flow Control Functions

StartL oop marks the begin of aloop

EndLoop marks the end of aloop

Label jump address within a macro

Goto instruction to go to a specified label

If checks alogical expression and act depending on the
result

Else indicates the point to continue processing after an If
statement was FALSE

Endif closesan If statement

User Interface Functions

Message shows a message on screen

9-10 OPUS-NT Programming Bruker Optik GmbH

Functions Sorted by Categories

StaticMessage shows a permanent message box during execution of a
macro
UserDiaog shows a user-defined dialog box

Input Functions

Enter Expression uses a mathematical expression for assigning avariable
value

FromReportHeader reads a value from areport header

FromReportMatrix reads a value from areport matrix

GetEnumList reads possible parameter values of optics parameters
GetParameter reads an OPUS parameter from a spectrum file
ReadTextFile reads the contents of atext file and writesit into an

array variable (see alphatbetical list).
Output Functions

PrintToFile writes aline of text into a specified text file
TextToFile writes atext lineto atext file

File Functions

Copy copies one or more files

Delete deletes one or more files

Rename renames one or more files

LoadFile loads adatafile

ScanPath scans the path for the specified files and writes them

into an array variable (see aphatbetical list).

Time Control Functions

GetTime gets system date and time
Timer instruction to achieve time control within a macro

Display Functions

OpenDisplayWindow opens a new window for all result files

CloseDisplayWindow closes a display window which had been opened with
OpenDisplayWindow

DisplaySpectrum shows a spectrum on screen

UnDisplaySpectrum hides a spectrum

GetDisplayLimits retrieves the current display limits of the macro display

window

SetDisplayLimits sets the display limits for the current macro display
window

SetColor sets the color of the specified spectrum on the display.

Bruker Optik GmbH OPUS-NT Programming 9-11

Macro Command Reference

9.6 System Functions

System Functions are used to access system values, like for example path
names. The following functions are available:

CdlMacro runs a sub macro

FindString searches text within another text
GetArrayCount retrieves the number of elementsin an array
GetLength retrieves the length of a STRING variable

GetMacroPath retrieves the path of the current macro
GetOpusPath retrieves the current OPUS path and assigns it to a string type

variable

GetUserPath retrieves the current user path and assignsit to a string type
variable

GetVersion returns the current OPUS version

CdlMacro runs a sub macro

SaveVars immediately saves the current values of marked variables

9.6.1 GetOpusPath

Retrieves the base path from which OPUS was started. The OPUS version
number isof type YYYYMMDD (e.g. 19990924).

To alow the design of macros that are machine independent, the path of the
OPUS folder can be retrieved at run time and read into a variable. Instead of
using fixed path names in a macro, we recommend using this path variable
instead.

Syntax:
<Variable> = GetOpusPath ();
<Variable> name of the variable to receive the current OPUS path.

The variable must be of the type STRING. The path is returned without back-
dlash at the end. If you want to specify a subdirectory of OPUS, you have to
insert the backslash between the variable name and the subdirectory name (e.g.
<OPUS Path>\methods).

9.6.2 GetUserPath

Retrieves the path to the user specific files and folders of the user currently
logged in.

If no user (user name blank at login) is specified, the function acts like the func-
tion GetOpusPath and returns the current OPUS path.

9-12

OPUS-NT Programming Bruker Optik GmbH

System Functions

To allow to write portable macros, the user specific path can be read into avari-
able. Instead of using fixed path names in a macro, we recommend to use this
path variable instead.

Syntax:
<Variable> = GetUserPath ();
<Variable> name of the variable to receive the current user path.

The variable must be of the type STRING. The path is returned without back-
dlash at the end. If you want to specify a subdirectory of your user path, you
have to insert the backslash between the variable name and the subdirectory
name (e.g. <User Path>\data)

9.6.3 GetMacroPath

Retrieves the path to the directory that holds the macro currently running and
savesitin aSTRING variable.

Syntax:
<Variable> = GetMacroPath ();
<Variable> name of the variable to receive the current macro path.

This command requires no parameters.

9.6.4 GetVersion

Gets OPUS version number and assigns it to the specified variable.
Syntax:

<Variable> = GetVersion ();

<Variable> variable to receive the OPUS version number.

The variable must be of type STRING.

9.6.5 GetArrayCount

Determines the number of elements of an array variable.

Syntax:

<Variable 1> = GetArrayCount (<Variable 2>);

<Variable1> numerica variable, to receive the number of array elements.

<Variable2> name of the array variable.

Bruker Optik GmbH OPUS-NT Programming 9-13

Macro Command Reference

9.6.6 GetLength

Determines the length of a STRING variable and stores it in a variable of type
NUMERICAL.

Syntax:

<Variable 1> = GetLength (‘<Variable 2>’);

<Variable1> numerical variable, to receive the number length of the string.
<Variable2> name of the STRING variable.

Example:

STRING <text> = "Hello world’;
NUMERI C <l engt h> = 0;
<l ength> = GetlLength (‘<text>");

<l engt h> hasthevalue 11.

9.6.7 FindString

Finds a specified text within a STRING variable and returns the position of the
first character of the search text, starting with zero for the first character of the
STRING variable. The return value can be used directly in atext format com-
mand. If the search text isnot found “-1" will be returned.

Syntax:

<Variable 1> = FindString (‘<Variable 2>', ‘Text’, Option);
<Variable1> numerical variable, to receive the result of the query.
<Variable2> name of the STRING variable, which is used as target.
Text string, to be searched.

Option condition applied for the search
CA SEcase-sensitive search
NOCA SEsearch not case-sensitive

Example:

STRING <text> = "This is the content of a STRI NG
vari abl e’ ;
<l ndex 2> FindString ('<text>, "of’, NOCASE);
<l ndex 1> FindString ('<text>, "this’, NOCASE);
<l ndex 2> <l ndex 2> - <lndex 1>;

<Result>=<[<l ndex 1>, <Index 2>] text>;

Message (‘<Result>", ON_SCREEN, NO_TIMEOUT);

<Resul t > hasthe value “the content”.

9-14 OPUS-NT Programming Bruker Optik GmbH

System Functions

9.6.8 CallMacro

Function to call a sub macro.

A sub macro is a stand alone macro, which must include a user dialog box. This
user dialog box includes all variables, that will be forwarded from the main
macro to the sub macro. In addition, a user dialog box can be included in a sub
macro as the last command line. This dialog box is used to specify the parame-
tersthat will be returned to the main macro. These dialog boxeswill not be dis-
played when running the macro.

Syntax:

CallMacro (‘Submacro’, { ‘Variable A1’, ‘Variable A2, ...}, { Variable B1’,
‘VariableB2',});

Submacropath and name of the macro to be run.
Variable Anvariables passed from the main macro to the sub macro.
Variable Bnvariables returned from the sub macro to the main macro.

The variable lists passed to and returned from a sub macro must be consistent
with the variable typesin the user dialog boxes. That is, the number and type of
the variables, as well as their order in the lists and dialogs, must be identical.
Blank lines in the dialog box will be skipped. Only variables of type STRING,
NUMERIC, BOOL and FILE are allowed in these dialog boxes.

Using sub macros has the advantage, that these macros can be tested individu-
aly and called up several times during a macro.

9.6.9 SaveVars
Saves the current values of all selected variables in the macro.

Normally, all selected variables will be saved, if a macro terminates without an
error. However, thisisnot the case, if amacro stops due to arun time error or a
power failure. To prevent the macro from starting again with the variable start
values e.g. after a power failure, insert this command at the appropriate prosi-
tion; restarting the macro will then cause the macro to continue using the last set
of values before the power failure.

Syntax:
SaveVars ();

This function requires no parameters.

Bruker Optik GmbH OPUS-NT Programming 9-15

Macro Command Reference

9.7 Flow Control Functions

Flow control functions are required, if a macro is not intended to run straight
from thefirst to the last line. Flow control function allow to include loops, con-
ditional or unconditional jumps and jumps controlled by buttons in user dialog
boxes.

StartLoop marks the begin of aloop

EndLoop marks the end of aloop

Label jump address within a macro

Goto instruction to go to a specified |abel

If checks alogical expression and act depending on the
result

Else indicates the point to continue processing after an If
statement was FALSE

Endif closes an If statement

9.7.1 StartLoop
Marks the beginning of aloop.

A loop is used to repeat a sequence of macro or OPUS commands. The loop
count, i.e. the number of repetitions of the command sequence, can either be a
constant or a NUMERIC variable. In case that a FILE variable is used, the
counter is automatically set to the number of files selected for this variable.
This allows to write macros, that account for any number of files.

Each loop begins with the StartLoop statement and ends with the EndLoop
statement. Also, each loop is identified by its loop index number. The loop
index number facilitates the correlation of StartLoop and EndLoop statements,
if loops are nested. Nesting of loops is allowed, as long as the beginning and
the end of a nested loop are both within the start and end of the outer loop(s).

Syntax:
StartLoop (LoopCount, Loopl ndex);

LoopCount: the loop count can either be a positive number, anumeric vari-
able, or afilevariable. If aFILE variable is chosen, the loop
count is determined by the number of selected files.

Loopl ndex a running index number, needed to correlate the StartLoop
with the EndL oop.

A loop count of zero or negative value is not alowed.

9-16

OPUS-NT Programming Bruker Optik GmbH

Flow Control Functions

9.7.2 EndLoop

Marks the end of aloop.

For details about |oops see “ StartLoop”.
Syntax:

EndL oop (L oopl ndex);

Loopl ndex a running index number, needed to correlate the StartLoop
statement with the EndL oop statement.

9.7.3 Goto
Instruction to jump to alabel.

Small macros usually are executed sequentially from the first line to the last
line. The Goto statement adds more flexibility to a macro, especialy if the
Goto statement is combined with an If statement. The Goto statement on its
own can be used to implement “endless’ loops (at the end of the macro ajump
to alabel at the beginning of the macro).

Syntax:

Goto (Label);

Label name of the label to jump to.
9.7.4 Label

A label marks the starting point for a Goto instruction.

The label statement itself does not perform any action. Thus labels can be
placed anywhere within a macro.

Syntax:
Label (Name);
Name is the unique name of the label.

The label name must be unique and may not be used as a variable name at the
same time. Please note, that labels within aloop are only alowed, if the Goto
statement linked to the label (or the user dialog box with the button) is placed
within the same loop.

Bruker Optik GmbH OPUS-NT Programming 9-17

Macro Command Reference

9.7.5 If ... Else ... Endif

Checks a logical expression and executes the sequence of command lines fol-
lowing the If statement, in case the expression is TRUE. If the expression is
FALSE, the command sequence is skipped, until either the Else or Endif state-
ment is encountered. Execution continues at the line following the Else or
Endif statement. The Endif statement is mandatory. If instructions can be
nested.

Syntax:

If (‘Valuel’ .Condition. ‘Value?');
Command Sequence 1

Else ();

Command Sequence 2

Endif ();

or

If (‘Valuel’ .Condition. ‘Value?');

Command Sequence 1

Endif ();

Valuel first value to compare, can be a number, text, bool or the
keyword TIME.

Value2 second value to compare, can be a number, text, bool or
the keyword TIME.

.Condition. logical comparison, the operator is enclosed by decimal
points.

EQ. equal; to compare strings in an If statement, can be a
number, text or bool.

.GT. greater than; numeric.

LT. lower than; numeric.

9-18 OPUS-NT Programming Bruker Optik GmbH

Flow Control Functions

LTEQ. lower than or equal, numeric.
.GTEQ. greater than or equal, numeric.
.NE. not equal, numeric

.NOCASE_PARTOF. part of string, case insensitive.
.CASE_PARTOF. Part of string, case sensitive.

Command Sequence 1 Sequence of command lines executed if the expression
ISTRUE.

Else() command marking the end of Command Sequence 1
and the beginning of Command Sequence 2.

Command Sequence 2 Sequence of command lines executed if the expression
ISFALSE.

Endif () command marking the end of the If statement, can either
be at the end of the Command Sequence 2 if the key-
word Elseisused or at the end of Command Sequence 1
iIf no Else statement is used.

Note that all three commands, like all other command lines, must be terminated
by semicolons. Also, the Else and Endif commands both require brackets.

The values to be compared can either be specified directly or as variables. The
keyword TIME allows to compare a time (format HH:MM:SS) statement with
the current system time. Set one of the values to the time to be compared to the
system time and use TIME as the second value.

Example 1.
[f (<Nunber 1> .GTEQ <Nunber 2>);
Message (’ <Nunber 1> is |larger than or equal to <Num
ber 2>, ON_SCREEN, NO_TI MEQOUT);
El se ();
Message, (' <Nunber 1> is smaller than <Number 2>,
ON_SCREEN, NO_TI MEQUT) ;
Endif ();
Example 2:
I f (<Baseline?> .EQ TRUE);
Baseline ([<File> AB], {});
Endif ();
Example 3:

If (TIME .GI. 12:00:00);
Message (It is lunch time’, ON_SCREEN, NO_TI MEQUT);
Endif ();

Bruker Optik GmbH OPUS-NT Programming 9-19

Macro Command Reference

Example 4:
If (...);
17 (.):

Endif (...
Else ()
If(.):
If (.;
Endif ()
Else ()
Endif ()
Endif ():

9.8 User Interface Functions

User interface functions are used to allow the communication between the oper-
ator and the running macro.

Message shows a message on screen

StaticM essage shows a permanent message box during execution of a
macro

UserDiaog shows a user-defined dial og box

9.8.1 Message
Shows a message box on screen.

The macro execution stops as long as the message box is shown. A confirma-
tionisrequired (i.e. aclick on the OK button) to continue running the macro. If
required, atimeout value can be specified, to prevent the hang up of the macro.

Syntax:
Message ('Text’, Option, Timeout);

Text the text to be displayed in the message box. The message can
either be text or variables or a combination of both. Note that
the text has to be enclosed in single quotes.

Option keyword for the behavior of the message box.

9-20 OPUS-NT Programming Bruker Optik GmbH

User Interface Functions

ON_SCREEN shows amessage on the screen.

ON_PRINTER prints message.

Timeout specifies, how long the message box will be displayed.
NO_TIMOUT message will stay on screen, until the user clicks OK.

X time in seconds, during which the message box stays on the
screen.

The option keywords can be combined if both actions are required
ON_SCREEN | ON_PRINTER.

If atimeout value is specified, the user still can terminate the message by click-
ing on OK, before the specified timeis over.

9.8.2 StaticMessage
Shows a permanent message dialog during the execution of a macro.

This dialog will not interrupt the macro execution and does not require any user
confirmation. Up to 14 lines of text can be displayed in the dialog. Depending
on the number of text lines displayed, the box will automatically be resized.

Syntax:

StaticMessage (Option, {'Textl’, 'Text2,, 'Text14'});

Option keyword for either displaying or hiding the message window.
SHOW shows the window and updates all lines.

HIDE removes the window from the screen; if this
option is set, the other options are not required
(Example: StaticMessage (HIDE, {});).

Text n text for line number n, can be either pure text or variables or a
combination of both. Note that the text has to be enclosed in
single quotes.

9.8.3 UserDialog
Shows a user-defined dialog box.

The dialog box can hold up to 14 lines of text. It isintended to enter or select
files and variables, as well as buttons for immediate execution of Goto state-
ments. The default box has two buttons Continue and AbortMacro at the bot-
tom. These buttons can be hidden.

Bruker Optik GmbH OPUS-NT Programming 9-21

Macro Command Reference

Syntax:

UserDialog (‘ Title', Options, Keyword 1:<Variable 1>',...,
Keyword 14:'<Variable 14>’);

Title

Option

the text shown in the title bar of the dialog box, can be a text
or avariable.

0

options specifying the behavior and appearance of the dialog
box.

standard dialog.

NODEFAULTBUTTON do not show the default buttons Continue

and Abort Macro.

Keyword n specifies the type of control shown in line number n. Types
can be:

BLANK empty line.

TEXT a text line showing the text of the specified STRING
variable.

EDIT an edit field for aSTRING or NUMERIC variable. The
edit field is preceded by the variable name.

CHECKBOX acheck box for a BOOL variable. The check box gets
the variable name.

COMBOBOX a combobox showing the contents of an array type
STRING or NUMERIC variable. The combobox is pre-
ceded by the variable name.

BUTTON a command button which is always connected to a Goto

instruction. If two buttons should be displayed two
variable names separated by a + sign have to be used
(example: BUTTON: <Buttonl> + <Button2>).

<Variable n>the variable to be used in line number n.

9.9

Input Functions

Input functions change variables or read parameters from a spectrum, an infor-
mation block or areport.

9-22

OPUS-NT Programming Bruker Optik GmbH

Input Functions

Enter Expression uses a mathematical expression for assigning avariable
value

FromReport Header reads a value from areport header

FromReport Matrix reads avalue from areport matrix

GetEnumL.ist reads possible parameter values of optics parameters

GetParameter reads an OPUS parameter from a spectrum file

ReadTextFile reads the contents of atext file and writesit into an
array variable

9.9.1 Enter Expression

Any mathematical expression can be used to assign valuesto a variable.
Syntax:

<Result> = Expression;

<Result> variable receiving the result of the expression.
Expression mathematical expression.

Any mathematical expression can be used here. Values can either be repre-
sented by numbers or NUMERIC variables. Use the mathematical operatorsin
the same way as a pocket calculator. Use brackets to ensure the correct
sequence when calculating an equation (e.g.'(2+2) * (4-2)").

Use the following case sensitive syntax to access mathematical functions:

SOQRT square root

P the number Pi

LN natural logarithm
LG decimal logarithm
EXP exponent

DXP decimal exponent
sin sine

cos cosine

tan tangens

asin arcsine

acos arc cosine

atan arc tangens

sinh hyperbolic sine
cosh hyperbolic cosine
tanh hyperbolic tangens

Y ou can also assign text to a string variable. In this case, the expression on the
right side of the equals sign must be enclosed in single quotes. Text, variables
or a combination of both can be used.

Bruker Optik GmbH OPUS-NT Programming 9-23

Macro Command Reference

Example:
<Dat aPat h> = ' <OPUS Pat h>\ Dat a’ ;
9.9.2 GetParameter
Function to read an OPUS parameter from a spectrum file.
Syntax:
<Variable> = GetParameter ([<File>:Blockl D], Parameter);
<Variable> the name of the variable for the parameter value.
<File> name of the file variable.
BlockiD name of the data block to read from (see below).
Parameter three letter parameter name of the parameter to be read.
If the data block is of the type spectrum, the parameter is read from the parame-
ter block associated with the specified data block. If the data block is of the
type INFO, one of the info text lines can be read.
The parameter names for INFO blocks are:
Txx =text definition of line xx (xx =00 - 99)
Ixx = contents of line xx (xx =00 - 99)
9.9.3 FromReportHeader
Reads a value from a report header.
Syntax:
<Variable 1> = FromReportHeader (File, Report, Subreport, Line, Option);
Variable 1 the name of the variable for the report value.
File file expression of the file variable to read from (report block

must be specified).
Report report number (default = 1) in the report block.
Subreport subreport number (default = 0, reads from main report).
Line header line to be read, either a constant or aNUMERICAL
variable.
9-24 OPUS-NT Programming Bruker Optik GmbH

Input Functions

Option keyword stating which part of the line to read.
LEFT left part of the header line, usualy the title

RIGHT right part of the header line, usually global values
(e.g. number of peaksin a peak table)

994 FromReportMatrix

Reads a value from areport matrix.
Syntax:

<Variable 1> = FromReportMatrix (File, Report, Subreport, Line, Row);

Variable 1 variable for the return value.

File file expression of the file variable to read from (must be a
report block).

Report report number (default = 1) in the report block.

Subreport subreport number (default = 0 reads from main report) of the
report.

Line number of the column to be read, either a constant or a

NUMERICAL variable.

Row number of the line to be read, either a constant or aNUMERI -
CAL variable.

9.95 ReadTextFile

Reads atext fileinto avariable array. Each line transformsto an array element.
Syntax:

<Variable > = ReadTextFile (‘File);

Variable variable to hold the text linesas alist.

File file specification, including path, name and extension.

9.9.6 GetEnumList
This function has not been implemented yet.

Gets all enum parameter values and writes them to the array elements of the
specified variable. Parameters of enum type are mainly used for optic parame-

Bruker Optik GmbH OPUS-NT Programming 9-25

Macro Command Reference

ters, which have a predefined set of allowed values. In most cases, these values
depend on the optics type. Typically, they are chosen from a Combobox in a
user dialog.

Syntax:
<Variable> = GetEnumL.ist (Parameter);

<Variable> name of the array variable to receive the list of allowed val-
ues. Each array element is assigned avalue.

Parameter name of the enum parameter.

The variable must be of type STRING.

9.10 OQutput Functions

Output functions are used to print results on a printer, into a text file or into the
print log file. In the current version, only the functions TextToFile and Print-
ToFile are available which write lines of text into atext file. Dueto compatibil-
ity reasons, the Print function of OPUS-OS/2 macros is mapped automatically
to the function PrintToFile.

TextToFile writes atext lineto atext file
PrintToFile writes aline of text into a specified text file

9.10.1 TextToFile

This function is the standard macro function to write a line of text into a text

file.

Syntax:

TextToFile (‘Path’, ‘File’, ‘Text’, Option);

Path the path of the text file.

Name name of the output file (specify with extension).
Text text lineto writeinto thefile.

Option controls how the text iswritten to the file

APPEND_TEXT the new text will be appended to the existing one.
REPLACE_TEXT the new text will replace the old text; if thefile
does not exist, it will be created.

9-26 OPUS-NT Programming Bruker Optik GmbH

File Functions

9.10.2 PrintToFile

This function writes aline of text into atext file.

The syntax is equivalent to an OPUS command, allowing to easily map the
function to the OPUS print function. If thetext file does not exist, it will be cre-
ated. If afile aready exists, the text line is appended at the end.

Syntax:

PrintToFile (0, {POP="Path’, POF="Name', PTX="Text'});

0 file list; see comment below.

POP parameter name for output path.

Path the path of the output file.

POF parameter name for output file name.

Name filename of the output file (specify with extension).
PTX parameter name for text line.

Text text lineto writeinto thefile.

The values of all three parameter can either be text or variables. The first com-
mand argument is normally the file list, specifying which report shall be
printed. If only asingle line of text is printed, this argument is zero. Because
the Print function for reports has not been implemented so far, an argument
which does not equal zero will cause an error message.

9.11 File Functions

File functions are used to access files within macros

LoadFile loads a data file

ScanPath scans the path for the specified files and write them into
an array variable

Copy copies one or morefiles

Rename renames one or more files

Delete deletes one or morefiles

Bruker Optik GmbH OPUS-NT Programming 9-27

Macro Command Reference

9.11.1 LoadFile

Function to load one or more data files into OPUS.
Syntax:

<File> = LoadFile (‘Filename’, Option);

<File> name of the file variable for assigning the loaded data file.
The LoadFile function returns the internal file number of the
loaded file.

Filename full path and file name of the file to be loaded, can either be a

text or aSTRING variable or a combination of both.

Option option for behavior if a file cannot be loaded (see remark
below).

WARNING shows a dialog box with an error message; this option can be
combined with one of the two following options (e.g.
WARNING | ABORT).

ABORT aborts the macro.
Goto (Label) jumps to the specified label.

If afile could not be loaded, the error condition is TRUE and the FILE variable
isnot initialized. Therefore, in general the ABORT option should be used. If
the file needs not to be processed immediately or at all, the Goto option can be
used instead. This gives you the opportunity to use the LoadFile function to
check, whether afile exists or not.

Note: Thisoption was only introduced for reasons of compatibility with OPUS-
OS2 Macro. We highly recommend to use the | T(MACRCERROR, . EQ.,
TRUE) ; statement for error checking instead.

The LoadFile function can be used to load more than one file at the same time.
Y ou only need to use wildcard characters (*, ?) in the file name. To process all
selected files, a StartLoop statement must follow the LoadFile command line,
which uses the name of the FILE variable as|oop count.

Example:
<File> = LoadFil e (’ D:\ OPUS\ DATA\ SEARCH*. 0’ , WARN-
ING | ABORT);
StartLoop (<File> 0);
EndLoop, 0) ;
All files beginning with the name SEARCH are loaded and processed in the
loop following the LoadFile instruction.
9-28 OPUS-NT Programming Bruker Optik GmbH

File Functions

Example:

Example

If wildcards are used, then LoadFile first loads all files into OPUS and pro-
cesses them in the following loop. Loading the files can become time consum-
ing with an increasing number of files. In this case it is preferable to load the
files viathe standard OPUS Load function, as shown in the following example.

<Name> = ScanPat h (’ D:\ OPUS\ DATA\ SEARCH*. 0") ;
<Counter> = CetArrayCount ();

StartLoop (<Counter, 0);

[<File>: AB] = Load (0, {DAP='D:\OPUS\DATA',
DAF=<Nane>

[<I ndex>]});

<| ndex> = <l ndex> + 1

Unl oad ([<File>:AB]);
EndLoop (0);

9.11.2 ScanPath

Scans the path for the specified files and writes each file name into an array ele-
ment of the variable. Wildcard characters should be used; otherwise only asin-
gle file will be found. To process all files in a directory, use *.* as the file
name.

Syntax:
<Variable> = ScanPath (‘File’);
<Variable> variable (array) receiving the files found in the path.

File drive, path and name of the files to be searched for.

9.11.3 Copy

Copies one or morefiles.

The Copy command also allows to change the file name while copying. Wild-
card charactersin the file name may be used.

Syntax:

Copy (‘Source’, ‘Destination’);

Source drive, path and name of file(s) to be copied.
File drive, path and name of the destination file(s).

Copy (‘C.\DATA\TEST*.0', ‘D:\DATA\TEST*.1);

Bruker Optik GmbH OPUS-NT Programming 9-29

Macro Command Reference

Example

Example

9.11.4 Rename

Renames one or more files. Files can also be moved to another directory.
Wildcard charactersin the file names are allowed.

Syntax:

Rename (‘ Source’, ‘Destination’);

Source drive, path and name of file(s) to be copied.

Destination drive, path and name of the destination file(s).

Rename (‘' C:\ DATA\ TEST*.*’, * C: \ DATA\ XYZ*.*");

9.11.5 Delete

Deletes one or more files.

Wildcard characters in the file name are allowed.
Syntax:

Delete (‘File');

File drive, path and name of file(s) to be deleted.

Del ete (*C: \DATA TEST*.*’);

9.12 Time Control Functions
Time control functions can be used to control the timing within amacro. Time
intervals as well as computer system time can be used.

GetTime gets system date and time
Timer instruction to achieve time control within a macro

9.12.1 GetTime
Gets system time and date.

This function gets the current system time and date of the computer. It returns
the (numeric) value for the year, month, day, hour, minute and second. All six
variables must be specified in the argument list of the command and all must

9-30

OPUS-NT Programming Bruker Optik GmbH

Display Functions

have been previously declared in the VARIABLES section. Arguments which
are not required can be replaced by zeros, eg. GetTime (0, 0, O,
<Hour >, <M nute>, <Second>);

Syntax:
GetTime (<Year>, <Month>, <Day>, <Hour>, <Minute>, <Second>);

<Year>,<Month>.... Variables to receive the specified value (year, month,
etc.).

The variable type must be NUMERIC. You must use format instructions to
convert the floating-point numbersto integers. Later you can change the format
to INTEGER, using format instructions.

9.12.2 Timer

Instruction to control the time behavior within a macro.
Syntax:

Timer (Option, Time);

Option specifies the behavior of the timer.
WAITTIME walits for the specified time interval.

WAITUNTIL waits until the specified time of day is reached (only use
HH:MM:SS format for time).

Time time can be specified as single number which is interpreted as
seconds or in HH:MM:SS format (HH = hours, MM = min-
utes, SS = seconds).

Note: You can aso use the | F statement to control the time behaviour within a
macro.

9.13 Display Functions

Display functions are used to show or hide spectra and to access the display lim-
its

OpenDisplayWindow opens a new window for all result files

DisplaySpectrum shows a spectrum on screen

UnDisplaySpectrum hides a spectrum

GetDisplayLimits retrieves the current display limits of the macro display
window

Bruker Optik GmbH OPUS-NT Programming 9-31

Macro Command Reference

SetDisplayLimits sets the display limits for the current macro display win
dow

9.13.1 OpenDisplayWindow
Opens adisplay window, containing all files newly created by the macro.

Commands that only modify an existing file (like “Peak Pick”) will not be
affected by the OpenDisplayWindow command. Changes made by these com-
mands will be displayed in the display window, where the original data was
shown.

Syntax:
OpenDisplayWindow ();

This command requires no additional parameters. However, if used in a macro,
it should be the first command.

9.13.2 CloseDisplayWindow
Closes adisplay window, which has been opened with OpenDisplayWindow.

Commands that only modify an existing file (like “Peak Pick”) will not be
affected by the OpenDisplayWindow command. Changes made by these com-
mands will be displayed in the display window, where the original data was
shown.

Syntax:
CloseDisplayWindow ();

This command requires no additional parameters.

9.13.3 DisplaySpectrum

Display the specified spectrum.

Syntax:

DisplaySpectrum ([<File>:Blockl D], Option);

<File> variable name of file to be displayed.
BlockiD name of the data block to be displayed.
Option keyword for display scaling.

NOAUTOSCALE keep the current display limits.

9-32

OPUS-NT Programming Bruker Optik GmbH

Display Functions

SCALE_SELECTED autoscale to the selected file.

SCALE_ALL autoscale to all spectrain the window.

9.13.4 UnDisplaySpectrum

Removes the specified spectrum from the display. The file remains loaded and
can be displayed again using the DisplaySpectrum command.

Syntax:
UnDisplaySpectrum ([<File>:BlockI D));
<File> variable name of file to be hidden.

BlockiD name of the data block to be hidden.

9.13.5 GetDisplayLimits

Retrieves the current display limits of the display window created with the
OpenDisplayCommand and saves them in the functions’ variables. If there was
no display window created, the active window will be taken instead.

Syntax:
GetDisplayLimits (<X-Start>, <X-End>, <Y-Min>, <Y-Max>;
<X-Sart>.... variables used to save the values determined by the command.

All four variables must be specified and be of the type NUMERIC.

9.13.6 SetDisplayLimits

Sets the limits of the display window created with the OpenDisplayCommand
to the values specified. If there was no display window created the active win-
dow will be taken instead.

Syntax:
SetDisplayLimits (<X-Start>, <X-End>, <Y-Min>, <Y-Max>);
<X-Sart>.... variables used to specify the display values.

All four variables must be specified and be of the type NUMERIC.

9.13.7 SetColor

Sets the display color of the specified spectrum.

Bruker Optik GmbH OPUS-NT Programming 9-33

Macro Command Reference

Syntax:

SetColor (<File>, <Color>);

<File> name of file variable.

Color keyword for display scaling.

BEIGE

BLACK

BLACK

BLUE

CYAN

CORAL

GREEN

GRAY

LIME

MAGENTA

MAROON

MIDNIGHT

OLIVE

PURPLE

RED

SEAGREEN

XY

TEAL

VIOLET

YELLOW

9-34

OPUS-NT Programming

Bruker Optik GmbH

Command Syntax of OPUS Functions

10 OPUS Command Reference

The OPUS commands accessible from the OPUS pull-down menus call OPUS
processing functions, that in turn perform the desired manipulation. These
OPUS processing function can be included in macros, scripts and external pro-
grams. Alternatively to launching a function via the OPUS pull-down menu
command, the function name can be typed in the OPUS command line.

10.1 Command Syntax of OPUS Functions

Syntax:

CommandName (Input List 1, ..., Input List n, {PAR 1=Value 1, ..., PAR
n=Valuen});

CommandName name of the OPUS command.

Input List n list of input files (see below).

PARN three letter parameter name n.

Value n value for parameter n.

Syntax for filelist:

([<File 1>:BlockID 1] ... [<File n>:Blockl D n]
<Filen> name of input file or the file variable n.
BlockiD n name of the data block of file n.

Notethat thefilesin alist are separated by blanks, while the lists themselves are
separated by commas. Most functionsrequire only onefilelist; afew files how-
ever, (like Make Compatible or Subtraction) need several filelists.

10.2 Including OPUS Commands in Macros

We strongly recommend to only use the Macro Editor, if you want to include
OPUS commandsinto macros. Using the Macro Editor guarantees that all rele-
vant parameters required by the command are inlcuded in the command line and
PARAMETER section. Furthermore, it is ensured that these parameters are ini-
tialized with valid values.

Bruker Optik GmbH OPUS-NT Programming 10-1

OPUS Command Reference

To append an OPUS command to a macro, simply select the command from the
OPUS pull-down menu, while the Macro Editor is running. Choose the appro-
propriate parameters, files and settings as usual in the dialog box of the com-

mand.
E st Open Macro Stare Macro
b acro:
Macmo Lines
Bazeline Comection E |
Select Files I Select Meth-:u:ll
LTS
— File[z] to Correct
M i,
Comect Cancel Help

Figure 61: Including an OPUS Command

After clicking on the Execution button in the dialog box for executing the com-
mand, the OPUS command dialog box is replaced by a parameter dialog, that
lists all parameters relevant for the processing function. When you click the OK
button, the respective OPUS processing function will be appended to the macro.

10-2 OPUS-NT Programming Bruker Optik GmbH

Including OPUS Commands in Macros

Aszzign Macro Yariables to Function Parameters
Parameter Parameter Hame Original Value Assign Variable
1 ¥ BME Baseline Method z
2 [BCO Exclude COZ - Bands 1]
3 v BPO NHumber of Baseline Point (64

Cancel |

Figure 62: Including an OPUS Command — Parameter Dialgo Box

Column 1: Abbreviation of the parameter and check box
Column 2: Parameter name
Column 3: Parameter value as set in the OPUS command dialog box
Column 4: Assigned macro variable
E xit Open kacro | Store Macro | Autocorect
b acro:

tacro Lines i
Baseline [0, {BME=2, BCO=0, BPO=E4}];

Figure 63: Resulting Command Line

Whether a parameter will be appended to the command line or included in the
PARAMETER section is controlled by the check box. If the check box is not
selected, a parameter entry will be made in the PARAMETER section. We rec-
ommend to always include all parameters in the command line. This ensures,
that the commands are using correct parameter values at the time of command
execution, in case a command or a goup of commands accessing the same
parameter is repetedly used. A parameter may only appear once in the
PARAMETER section and therefore, the parameter can only have one value.
The only exception to this rule are the measurement commands, explained in
detail in the following chapters.

Note: parameters, that have been assigned macro variables must appear in
the command line!

Bruker Optik GmbH OPUS-NT Programming 10-3

OPUS Command Reference

A combobox is displayed above the parameter list of OPUS commands, which
return a result or a file to the macro. From this box, you have to indicate the
variable supposed to hold the returned data. Although the OPUS command will
be processed correctly by the macro even if no variable was chosen, the
returned data then is not accessible.

10.3 Measurement Commands

As aready mentioned, the measurement commands differ from the rest of the
OPUS commands. When you include the Measurement command in a macro,
you will find that only two parameters XPP and EXP are selected by default.
XPP represents the directory of the experiment file and EXP the name of the
experiment. It is highly recommended to assign macro variables to these
parameters. This guarantees, that a measurement started from a macro always
uses an existing experiment file (and therefore a defined parameter set). For
measurement functions, the remaining parameters won't be included in the
PARAMETER section!

Other parameters than XPP and EXP should only be selected, if they are
intended to replace values stored in the experiment file or if macro variables
should be assigned to these parameters. Thiswill become clear, if one looks at
the sequence in which a measurement command is executed.

Measurement without Using an Experiment File (not recom-
mended)

1) The measurement primarily uses the values entered in the PARAME-
TER section, if anything.

2) Parameter included in the command line override the values declared in

the PARAMETER section.

Example:
[<File>] = MeasureSanmple (0, {NSS = 16});
Regardless of the original settings the measurement will now run 16 scans.
Measurement Using an Experiment File (XPP and EXP
Selected)
The parameters of the PARAMETER section are ignored, and the parameters
stored in the experiment file will be used instead. Again, parameters included
in the command line override the values stored in the experiment file.

Example:
[<File>] = MeasureSanple (0, {XPP = '<XMP Path>, EXP =
"default’, NSS = 16});

104 OPUS-NT Programming Bruker Optik GmbH

Reference Section

Regardless of the settings stored in the experiment file, the measurement will
now run 16 scans.

10.4

Reference Section

The following section describes the OPUS commands in detail. The sections
areall structured in the sameway. You will find:

the title, which consists of the OPUS command referenced in this
section.

asummary of the command.
an indication, whether the command modifies files or not.
an explanation of the syntax.
atable, listing all command parameters and their function.

a note, if the command has not been implemented in OPUS to this
point in time.

All of the parameters you will find listed in the tables are required, and must be
stated as a part of the command. A parameter statement should therefore be
included either in the parameter list of the command or in the PARAMETER
section of the macro. If no parameter statement was made in a macro, OPUS

will

use the parameters of the active parameter set, when executing the macro.

This usually leads to unpredictable results.

10.5 OPUS Functions Sorted Alphabetically
A
ABTR absorbance transmittance conversion
Average averages spectra
B
Baseline performs a baseline correction of a spectrum
BlackBody Black Body generation
C
ChangeDataBlockType changes the type of a data block
Convert converts spectra
CopyDataBlock copies a data block from one file to another
Cut cuts afrequency range out of a spectrum

Bruker Optik GmbH

OPUS-NT Programming 10-5

OPUS Command Reference

D

Deconvolution
DeleteDataBlock
Derivative

E

External Program
Extrapolation

F

FFT
FregCalibration

Infol nput
Integrate
InverseFT

J
JCAMPT0oOPUS
K
KramersKronig
M

MakeCompatible
MeasureReference
Merge

N

Normalize

P

PeakPick

Plot

PostFT Zerofill
R

RamanCaorrection
Restore

Fourier salf deconvolution
deletes the specified data block
caculates the derivative

starts an external program
extrapolates spectra

Fast Fourier transformation
frequency calibration

adds an information block to afile
integrates a spectrum
performs an inverse Fourier transformation

convertsa JCAMP-DX fileto OPUS format

performs a Kramers Kronig transformation

makes spectra compatible
measures a background spectrum
merges spectra

normalizes a spectrum

creates a peak table
plots spectra
Post Zerofilling of a spectrum

applies Raman correction
restores an original datafile

OPUS-NT Programming

Bruker Optik GmbH

OPUS Functions Sorted by Type

10.6

S

Save

SendFile
SignalToNoise
Smooth
StraightLine
Subtract

U

Unload

saves a spectrum file

sends afileviae-mall

calculates the Signal-to-Noise ratio

smooths a spectrum

inserts a straight line in a spectrum

subtracts one or more spectra from another spec-
trum

removes a spectrum from the Browser

OPUS Functions Sorted by Type

Manipulation Functions

ABTR
Average
Basdline
BlackBody
Convert

Cut
Deconvolution
Derivative
Extrapolation
FFT
FregCalibration
InverseFT
KramersKronig
MakeCompatible
Merge
Normalize
PostFT Zerofill
RamanCorrection
Smooth
StraightLine
Subtract

Evaluation Functions

Integrate
PeakPick
SignalToNoise

absorbance transmittance conversion
averages spectra

performs a baseline correction of a spectrum
Black Body generation

converts spectra

cuts a frequency range out of a spectrum
Fourier self deconvolution

calculates the derivative

extrapolates spectra

Fast Fourier transformation

frequency calibration

performs an inverse Fourier transformation
performs a Kramers Kronig transformation
makes spectra compatible

merges spectra

normalizes a spectrum

Post Zerofilling of a spectrum

applies Raman correction

smooths a spectrum

inserts a straight line in a spectrum
subtracts one or more spectra from another spec-
trum

integrates a spectrum
creates a peak table
calculates the Signal-to-Noise ratio

Bruker Optik GmbH

OPUS-NT Programming

10-7

OPUS Command Reference

10.7

File Functions

ChangeDataBlockType
CopyDataBlock
DeleteDataBlock
Restore

Save

SendFile

Unload

changes the type of a data block

copies a data block from one file to another
deletes the specified data block

restores an original datafile

saves a spectrum file

sends afileviae-mall

removes a spectrum from the Browser

M easur ement Functions

MeasureReference
SendCommand
SaveReference
L oadReference

Library Functions

LibrarySearchinfo
LibrarySearchPeak
LibrarySearchStructure
LibrarySearchSpectrum
Librarylnitialize
LibraryStore

LibraryEdit

Infol nput

measures a background spectrum

send an optics command to the optics bench
saves a reference spectrum from the AQP to disk
|loads a reference spectrum from the disk into the
AQP

information search in library files

peak searchin library files

structure search in library files

spectrum search in library files

creates anew, empty library file

stores anew entry in alibrary file or replaces an
existing one

edits an entry, the library description, and the
definition of information stored in alibrary file.
adds an information block to afile or edits an
existing one

M iscellaneous Functions

External Program
Plot

10.7.1 ABTR

starts and external program
plots spectra

OPUS Manipulation Functions

Absorbance —. Transmittance conversion.

This functions modifies the selected spectrum and changes the data block type

accordingly.

10-8

OPUS-NT Programming

Bruker Optik GmbH

OPUS Manipulation Functions

ABTR ([<File>:Blockl D] ..., {...});

Parameter Value Description
CCM 1 automatic
2 AB - TR
3 TR - AB

10.7.2 Average

Averages spectra.

This command requires threefile lists:

FileList 1:
File List 2:

FileList 3:

Spectra to be averaged.

(optional) File to store the average result.

(optional) File to store the standard deviation resullt.

If File List 2 and/or 3 are not specified, they have to be set to “0”.

Average ([<File 1>:BlockI D 1], [<File 2>:Blockl D 2], [<File 3>:BlocklID 3],

{5
Parameter Value Description
QA0 0 Do not average with number of scans
1 Average with number of scans
QA2 0 Don't create average report
1 Cresate average report
QAE NO Don't create standard deviation spectrum
YES Create standard deviation spectrum
QAF NO Don't update standard deviation spectrum
YES Update standard deviation spectrum
QAL LIS Average selected files
FIL Average files selected by name and path
QAM Text Path of the filesto be averaged
QAN Text Name of thefiles to be averaged
QAO Numerisch BlocklD of thefilesto be averaged
QFB Text Path of the IDENT method
QFC Text Name of the IDENT method
Bruker Optik GmbH OPUS-NT Programming 10-9

OPUS Command Reference

10.7.3 Baseline
Performs a baseline correction of a spectrum.
This command modifies the selected spectrum.

Baseline ([<File>:BlockID], {...});

Parameter Value Description
BME 1 Rubber Band correction

2 Scattering correction
BPO 10... 200 number of baseline points
BCO 0 include CO, bands

1 exclude CO, bands

10.7.4 BlackBody
Calculates a spectrum of a Black Body radiator.
This function adds a single channel sample data block to the selected file(s).

BlackBody ([<File>:BlockID], {...});

Parameter Value Description
QTE pos. number | temperature of the Black Body radiator
QPM 0 energy

1 photons

10.7.5 Convert

Converts spectra.

This functions modifies the selected spectrum and changes the data block type
accordingly.

Convert ([<File>:BlocklD],{...});

10-10 OPUS-NT Programming Bruker Optik GmbH

OPUS Manipulation Functions

Parameter

Value

Description

CSD

AB, TR, Refl

KM - Refl

AB,TR - ATR

ATR - AB

Refl — IgRefl

IgRefl — Refl

ScSm — Raman

Q| N[O O] | W] N|

Raman — ScSm

10.7.6 Cut

Cuts out a frequency range of a spectrum file.

This functions modifies the selected spectrum file.

Cut ([<File>:BlockID], {...});

Parameter Value Description
CFX number X-start frequency
CLX number X-end frequency

10.7.7 Deconvolution

Performs a Fourier saelf deconvolution.

This functions modifies the selected spectrum.

Deconvolution ([<File>:Blockl D], {...});

Parameter Value Description
DSP peak form

LO Lorentzian

GA Gaussian
DEF pos. number | deconvolution factor
DNR pos. number | noise reduction factor
DES number X-start frequency
DEE number X-end frequency
DWR 0 frequency limits

1 filelimits

Bruker Optik GmbH

OPUS-NT Programming

10-11

OPUS Command Reference

10.7.8 Derivative

Calculates the derivative of a spectrum.

This functions appends a new data block, containing the derivative of the spec-
trum, to the original data.

Derivative ([<File>:BlockID], {...});

Parameter Value Description

5,9, 13, . .
QSsP 17, 21, 25 number of smoothing points
QOD 1.5 order of derivative

10.7.9 Extrapolation
Extrapolates a spectrum.
This functions modifies the selected spectrum.

Extrapolation ([<File>:Blockl D], {...});

Parameter Value Function

QX0 number extrapolate to zero

QX1 number extrapolate to infinity

QX2 number lower frequency limit

QX3 number upper frequency limit

QX4 number new end frequency
10.7.10 FFT

Performs a Fast Fourier transformation..

This command performs a fast Fourier transformation of an interferogram. The
result is asingle channel spectrum data block, which will be added to the file.

FFT ([<File>:BlockiD], {...});

10-12 OPUS-NT Programming Bruker Optik GmbH

OPUS Manipulation Functions

Parameter Value Description
FTS number start frequency of the spectrum
FTE number end frequency of the spectrum
FZF pos. number | Zerofilling factor
FTR pos. number | resolution
FHR pos. number | phase resolution
FBW bit code used to indicate forward/backward or
even/odd
1 forward interferogram
backward interferogram
8 even separation
16 odd separation
FTA apodization function
BX Boxcar
TR Triangular
4P Four Point
HG Happ-Genzel
B3 Blackman-Harris 3-term
B4 Blackman-Harris 4-term
NBW Norton-Beer, weak
NBM Norton-Beer, medium
NBS Norton-Beer, strong
FLR pos. number | limit resolution
FHZ phase correction
ML Mertz
SM Signed Mertz
PW Power spectrum
MS Mertz stored phase
NO No — save complex data
FZF pos. number | Zerofilling factor
FNL 0 no nonlinearity correction
1 nonlinearity correction
FNC pos. number | nonlinearity correction — detector cutoff
FNE pos. number | nonlinearity correction —mod. efficiency
FSM ZPD search mode
AL largest absolute value
Bruker Optik GmbH OPUS-NT Programming 10-13

OPUS Command Reference

MN minimum
MX maximum
Ml mid position between min and max
NO use stored value
MA manual input
FPP pos. number | peak position
FSR pos. number | search range
FSY symmetry for search range
0 symmetrical
antisymmetrical
2 automatic
FTT to do list — hit list for result data blocks
1 absorbance
2 interferogram
4 single channel
8 power spectrum
16 phase spectrum
64 single channel (real)
128 single channel (imaginary)

10.7.11 FreqCalibration
Performs a frequency calibration.
This functions modifies the selected spectrum.

FregCalibration ([<File>:BlocklD],{...});

Parameter Value Description

QFO NO do not restore original values
YES restore original vaues

MwWC number factor

AWC number offset

10.7.12 InverseFT
Performs an inverse Fourier transformation.

This command performs an inverse Fourier transformation of a spectrum. The
result is a single channel spectrum data block, which will be added to thefile.

10-14

OPUS-NT Programming Bruker Optik GmbH

OPUS Manipulation Functions

InverseFT ([<File>:Blockl D], {...});
Parameter Value Description
RSY symmetry
0 symmetric
1 Antisymmetric
RXS number X-start frequency
RXE number X-end frequency
RWR 0 frequency limits used
1 file limits used

10.7.13 KramersKronig

Performs a Kramers Kronig transformation.

This command performs a Kramers-Kronig transformation of a reflectance
spectrum. The rea and imaginary part of an absorbance-like spectrum will be
calculated. The result is a single channel spectrum data block which will be

added to thefile.

KramersKronig ([<File>:Blockl D], {...});

Parameter Value Description

KKR desired result
0 refractive index (complex)
1 absorbance
2 dielectric function (complex)
3 phase

KKS number X-start frequency

KKE number X-end frequency

KWR 0 use specified frequency limits
1 use file limits

10.7.14 MakeCompatible

Makes spectra compatible.

This functions interpolates the selected spectrum to the frequency limits and

point raster of areference spectrum.

This functions modifies the selected spectrum and changes the data block type
accordingly. The reference spectrum remains unchanged.

Bruker Optik GmbH

OPUS-NT Programming 10-15

OPUS Command Reference

MakeCompatible ([<Filel>:Blockl D1], ([<File2>:BlockI D2], {...});

<Filel> referencefile.
<File2> file to be interpolated.
Parameter Value Description
CME interpolation method
interpolation
3 reduce resolution

10.7.15 Merge
Thisfunction has not been implemented yet.
Merges spectra

Merge ([<File>:BlockID], {...});

10.7.16 Normalize
Normalizes a spectrum.
This functions modifies the selected spectrum.

Normalize ([<File>:Blockl D], {...});

Parameter Value Description

NME 1 min-max normalization
2 vector normalization
3 offset correction

NWR 0 use specified frequency limits
1 use file limits

NFX number X-start frequency

NLX number X-end frequency

10.7.17 PostFTZerofill

Performs a post Zerofilling of a spectrum.

This functions modifies the selected spectrum.

10-16 OPUS-NT Programming Bruker Optik GmbH

OPUS Manipulation Functions

PostFTZerdfill ([<File>:BlockID] ..., {...});

Parameter Value Description
PZF pos. number | Zerofilling Factor
PzZS number X-start frequency
PZE number X-end frequency
PWR frequency limits
0 use specified frequency limits
use file limits

10.7.18 RamancCorrection

Performs a Raman correction.

This functions modifies the selected spectrum.

RamanCorrection ([<File>:Blockl D], {...});

Parameter Value Description
QCO background correction
0 do not perform correction
perform correction
QC1 scatter correction
0 do not perform correction
perform correction
QC2 restore original data
0 do not perform correction
1 perform correction
QC3 Text path for white light source spectrum
QC4 Text name of white light source spectrum
QC5 pos. number | reference temperature

10.7.19 Smooth

Smoothes a spectrum.

This functions modifies the selected spectrum.

Bruker Optik GmbH

OPUS-NT Programming

10-17

OPUS Command Reference

Smooth ([<File>:Blockl D], {...});

Parameter Value Description
5,9, 13, : .
QSP 17, 21, 25 number of smoothing points

10.7.20 StraightLine

Generates a straight line.

This functions modifies the selected spectrum.

StraightLine ([<File>:Blockl D], {...});
Parameter Value Description
GFX number X-start frequency
GLX number X-end frequency

10.7.21 Subtract

Subtracts one or more spectra from another spectrum.

The spectrum from which the others are subtracted is modified. The spectrum/
spectrawhich are subtracted stay unchanged.

Subtract ([<File A>:Blockl DA], ([<File B>:BlockIDB], {...});

<File A>

<FileB>

file(s) which are subtracted from <FileA>.

file to be subtracted from, thisfile is modified.

Parameter

Value

Description

SUB

subtraction mode

interactive

autosubtraction

use whole range

number of spectra

SX1

X-start frequency

SX2

X-end frequency

10-18

OPUS-NT Programming

Bruker Optik GmbH

OPUS Evaluation Functions

10.8 OPUS Evaluation Functions

10.8.1 Integrate

Integrates a spectrum.

This function adds an integration report to the file.

Integrate ([<File>:BlocklD], {...});
Parameter Value Description
LPT text path for integration method
LFN text file name of the integration method
LRM report mode
0 overwrite old integration report
merge integration reports
2 append integration report

10.8.2 PeakPick

Creates a peak table.

This function adds a peak table data block to the file.

PeakPick ([<File>:BlockID], {...});

Parameter Value Description
PSM peak mode
1 standard peak pick
2 2. derivative
NSP 5179 ' 2113: ’ o5 number of points used for 2. derivative
WHR frequency limits
0 use specified frequency limits
1 use file limits
LXP number start frequency
FXP number end frequency
PPM peak definition
1 autodetect (min or max)
2 find maximum

Bruker Optik GmbH

OPUS-NT Programming

10-19

OPUS Command Reference

3 find minimum
PTR pos. number | find peaks > value (absolute)
QPO decimals
YES digits after decimal, user-defined
NO digits after decimal, not defined by user
QP3 pos. integer | digits after decimal
QP4 peak limits (%)
YES use peak limits
NO ignore peak limits
QP5 pos. integer | find peaks < value (%)
QP6 upper absolute peak limit
YES use upper absolute peak limit
NO ignore upper absolute peak limit
QP7 pos. integer | find peaks < value (absolute)
QP8 lower absolute peak limit
YES use lower absolute peak limit
NO ignore lower absolute peak limit

10.8.3 SignalToNoise

Calculates the Signal-to-Noiseratio.

This function adds parameters to the data parameter block of the selected spec-
trum.

SignalToNoise ([<File>:Blockl D] ..., {...});

Parameter Value Description

NF1 number start frequency

NF2 number end frequency

SN1 number SIN (RMS)

SN2 number SIN (peak to peak)

SN3 number maximum ordinate in /N region
SN4 number minimum ordinate in S/N region
SNF flags

10-20 OPUS-NT Programming Bruker Optik GmbH

OPUS File Functions

10.9 OPUS File Functions

10.9.1 ChangeDataBlockType

Thisfunction has not been implemented yet.
Change the data block type.

This functions does not modify the specified data block, only the block ID is
changed.

ChangeDataBlockType ([<File>:Blockl D], {...});

10.9.2 CopyDataBlock

Thisfunction has not been implemented yet.
Copies adata block from one file to another.
This function adds the specified data block to the selected file in filelist B.

CopyDataBlock ([<File A>:BlockI D], ([<File B>] ..., {..});

<file A> sourcefile.
blockiD name of the data block to copy.
<fileB> destination file.

10.9.3 DeleteDataBlock
Deletes the specified data block.
The specified block is removed from the file.

DeleteDataBlock ([<File>:BlocklD], {...});

10.9.4 Restore
Restores original File.

Thisfunction restores the original file and discards all changes made so far. All
changes are lost if the results had not been saved before.

Restore([<File>:Blockl D], {});

The function does not require any parameters.

Bruker Optik GmbH OPUS-NT Programming 10-21

OPUS Command Reference

10.9.5 Save, SaveAs

Saves a spectrum file.

This function stores the eventually modified file to disk.

Save ([<File>:Blockl D], {...});

Save As ([<File>:Blocki D], {..});

Parameter Value Description
OEX overwrite mode
0 increment file name
overwritefile
SAN file name
DAP target directory
COF bit combination for save mode
save all data blocks
4 movefile
16 remove copies
32 save as JCAMPdx file
64 save as X,y table
128 replace original data
256 save as Galactics GRAMSfile
512 unload file after saving it
1024 save as Pirouettefile

The following parameters will only be used when saving afile as an x,y table.

DPA pos. number | number of decimals, abscissa
DPO pos. number | number of decimals, ordinate
SEP character separator
YON Y-values

1 Y-Values only

0 X and Y-Values
ADP data points

use all data points
0 do not use all data points

10-22

OPUS-NT Programming

Bruker Optik GmbH

OPUS Measurement Functions

10.9.6 SendFile

Sends afileviae-mail.
This function does not modify the specified file.

SendFile ([<File>:BlocklD], {...});

Parameter Value Description
COF data blocks
0 send only specified block

send all blocks

10.9.7 Unload
Removes a spectrum from Browser.

This function removes the specified file from the OPUSfile list. Thefileisno
longer accessible from the macro.

Unload ([<File>:BlocklID], {...});

The function does not require any parameters.

10.10 OPUS Measurement Functions

We strongly recommend to set the measurement parameters for a macro using
an experiment file. Most of the parameter are linked and checked for consis-
tency before starting an acquisition. Therefore, an inconsistent or wrong
parameter set will most likely not be able to start an acquisition, and can be rec-
ognized easily. Only a few of the parameters listed below can be set without
any problems either manually or by using variables.

10.10.1 Measurement Commands

The measurement commands always use the same parameters. Y ou should only
use the parameters listed here.

1) Measure Reference: MeasureReference ({...}); acquires a background

spectrum.

2) Measure Sample: <File> = MeasureSample ({...}); acquires a sample
spectrum.

3) Measure Repeated: <File> = MeasureRepeated ({...}); acquires a set of
sample spectra.

Bruker Optik GmbH OPUS-NT Programming 10-23

OPUS Command Reference

4) Measure Rapid TRS: <File> = MeasureRapidTRS ({...}); performs a
rapid scan acquisition.

5) Measure Step Scan Trans. <File> = MeasureStepScanTrans ({...}); per-
forms a Step Scan acquisition, using a transient recorder.

Parameter Value Description

SNM text sample name

SFM text sample preparation
CNM text operator

XPM text experiment file name
XPP text path for experiment file
RES pos. number | resolution

NSS pos. number | number of scans

10.10.2 SendCommand

Sends an optics command to the optics bench.

This function does not need an input spectrum.

SendFile (0, {...});
Parameter Value Description
UNI text text to be sent

10.10.3 SaveReference

Saves a reference spectrum from the AQP to disk.
This function creates a new file.

SaveReference (0, {...});

The function does not require any parameters.

10.10.4 LoadReference
L oads a reference spectrum from disk into the AQP.
This function does not modify the spectrum.

LoadReference ([<File>:ScRf], {...});

The function does not require any parameters.

10-24 OPUS-NT Programming Bruker Optik GmbH

OPUS Library Functions

10.11 OPUS Library Functions

10.11.1 LibrarySearchinfo
Searches for information in a spectrum library.

This function performs a query for information within a spectrum library. The
guery text must be supplied in a query file (extension .INL); use the OPUS-NT
Information Search dialog to create and save aquery file.

[<Filel>:Blockl D] = LibrarySearchlnfo (0, {...});

Standard search.

<File1> Contains the search resullt.

[<Filel>:Blockl D] = LibrarySearchlnfo ([<File2>:Blockl D], {...});

Query using an existsing search report.

<File1> Contains the search resullt.
<File2> Contains the search report.
Parameter | Value Description Remarks
SIH NUMERIC | M&imum number | pes o
of hits
SIN STRING name of the |.nfor- fl.Ie name including exten-
mation query file sion (.INL)
SIP STRING E?Ieh of the query path without teminating “\”
names of the library files.
They must be stated includ-
list of library files | ing drive and path but with-
LBL STRING to be searched out extension. Separate
multiple file names with
113 @ll .

10.11.2 LibrarySearchPeak
Searches for peaksin a spectrum library.

This function performs a query for peaks within a spectrum library. The query
R must be supplied in a query file (extension .PKL); use the OPUS-NT Peak
Search dialog to create and save such a query file.

Bruker Optik GmbH OPUS-NT Programming 10-25

OPUS Command Reference

[<Filel>:Blockl D] = LibrarySearchPeak (0, {...});

Standard search.

<File1>

Contains the search result.

[<Filel>:Blockl D] = LibrarySearchPeak ([<File2>:Blockl D], {...});

Query using a search report.

<File1> Contains the search resullt.
<File2> Contains the search report.
Parameter | Value Description Remarks
Range between 1 and 1000
minimum Hit qual- | Will only be used in combi-
SPQ NUMERIC ity nation with the Calculate
Hit Quality algorithm.
SPH NUMERIC Lnearx'm“m HItnum- |- st be> 0
SPA NUMERIC | search agorithm
hit if one peak
512 matches
hit if al peaks
1024 match
2048 calculate hit quality
count matching
4096 pecks
PNP STRING name _of the peak f|-Ie name including exten-
query file sion (.PKL)
PPP STRING path of the peak | i without teminating “\”
query file
names of the library files.
They must be stated includ-
list of library files | ing drive and path but with-
LBl STRING to be searched out extension. Separate
multiple file names with
113 @H.

10-26

OPUS-NT Programming

Bruker Optik GmbH

OPUS Library Functions

10.11.3 LibrarySearchStructure
Searches for chemical structuresin a spectrum library.

Thisfunction performs a query for chemical structureswithin alibrary file. The
query must be supplied in a structure data block.

LibrarySendStructure([<Filel>:BlockI D], O, {...});

Standard search.

<File1> Contains the query structure.

LibrarySearchStructure ([<Filel>:Blockl D], [<Filel>:Blockl D], {...});

Query using an existing search report. The result will be appended to the file
containing the structure block.

<File1> Contains the query structure.
<File2> Contains the search report.
Parameter | Value Description Remarks
STH NUMERIC | Mimum number |- peso
of Hits
LAL NUMERIC | search agorithm
8192 match exact
12288 match embedded

names of the library files.
They must be stated includ-
list of library files | ing drive and path but with-

LBl STRING to be searched out extension. Separate
multiple file names with
H@H.

10.11.4 LibrarySearchSpectrum
Searches for spectrain a spectrum library.

This function performs a query for peaks within a spectrum library. The query
spectrum must be absorbance-like.

LibrarySearchSpectrum ([<Filel>:Blocki D], O, {...});
Standard search.

<File1> The query spectrum.

Bruker Optik GmbH OPUS-NT Programming 10-27

OPUS Command Reference

LibrarySearchSpectrum ([<Filel>:Blockl D], [<File2>:Blockl D], {...});

Query using a search report.

<File1> The query spectrum.
<File2> Contains the search report.
Parameter | Value Description Remarks
Range between 1 and 20
I Will only be used in combi-
LSS NUMERIC | sensitivity nation with the Sandard
agorithm.
SSQ NUMERIC i”g'/”' mum Hit qual- | o e between 1 and 1000
SSH NUMERIC | Maimum number | o pes g
of Hits
When using spectrum corre-
ss1 NUMERIC | search agorithm lation algorithms, the value
will always be the sum of
three options.
1 standard
5 standard, use exist-
ing peak table
4 spectrum correla
tion
one of the three derivatiza-
+16 no derivative tion types must be added to
the base value.
+32 first derivative
+64 second derivative
vector normaliza one of the two normalization
+128 . types must be added to the
tion
base value.
1256 .mln.-max normal-
ization
names of the library files.
They must be stated includ-
list of library files | ing drive and path but with-
LBl STRING to be searched out extension. Separate
multiple file names with
113 @H .

10-28

OPUS-NT Programming

Bruker Optik GmbH

OPUS Library Functions

10.11.5 Librarylnitialize

Creates anew, empty library.

A method file (extension .MTD) and atext file (extension .TXD) is needed to
create alibrary file.

Librarylnitialize ({...});

The function does not require any parameters.

Parameter | Value Description Remarks

LPT STRING path of the text defi- path without teminating “\”
nition file

LBT STRING ”a”?e. .Of t he text file name without extension
definition file

MTP STRING E?Ieh of the method path without teminating “\”

LMT STRING ?i?g]e of the method file name without extension

LBP STRING c!lrectory of the new path without teminating “\”
library file

LBN STRING ;T?e of the library file name without extension

LID STRING library description maximum 79 characters

LCP STRING copyright maximum 79 characters

10.11.6 LibraryStore

Stores a new entry, the library description, and the definition of information
savedin alibrary file.

LibraryStore (0, [<File>:BlockI D], {...});

The function does not require an input file list.

Bruker Optik GmbH

OPUS-NT Programming

10-29

OPUS Command Reference

Parameter | Value Description Remarks
LSM NUMERIC | storage mode
1 new entry
3 replace entry
5 replaceinfo
y insert/replace struc-
ture
LBP STRING @rectory of the path without teminating “\”
library file
LBN STRING ;??e of the library file name without extension
LBS NUMERIC | entry number for dll storage modes except
New Entry”.

10.11.7 LibraryEdit

This function loads and deletes entries of a library. Furthermore, the descrip-
tion of the library as well as the description of the stored information can als be

edited.

[<File>:Blockl D] = LibraryEdit (O, {...});

Syntax to load a spectrum of alibrary entry.

LibraryEdit (O, {...});

Syntax for any other option

10-30

OPUS-NT Programming

Bruker Optik GmbH

OPUS Library Functions

Parameter | Value Description Remarks
LMO NUMERIC | edit mode
2 load entry
5 delete entry
change information
13 ot
14 change description
only required for the “Load
LBS NUMERIC | entry number Entry” and “Delete Entry”
mode.
LBP STRING c!lrectory of the path without teminating “\”
library file
name of the library . . .
LBN STRING file file name without extension
only required for the
“Chande Info Definition”
and “Chande Description”
new information | mode. Contains the com-
LID STRING definintion file or | plete path and name of the
library description new information definition
file (extension .TXD) or the
description, depending on
the mode.

10.11.8 Infolnput

Allows information input.

This function adds an information block to the selected file. Depending on the
mode, either the complete info block is replaced, only selected information of
an existing info block is replaced, or a new file with an info block will be cre-

ated.

Infolnput ([<File>:BlocklD] ..., {...});

Syntax if ablock should be replaced or extended.

[<File>:Blockl D] = Infolnput ({...});

Syntax if anew file should be created.

Bruker Optik GmbH

OPUS-NT Programming

10-31

OPUS Command Reference

Parameter | Value Description
IRM STRING information input |
mode
the complete info
(@] block will be over-
written.
the complete info
R block will be
replaced.
generate new info
N .
file
INP STRING p_at_h of_thelnfo defi- Reqtur(fd for the modes “O
nition file and “N”.
INM STRING .na.\rr.leof.themfodef— Rqulr?d for the modes “O
inition file and “N”.
101 STRING information of line1 | P
102 STRING information of line 2
199 STRING information of line
99
TO1 STRING description of line 1
T0O2 STRING description of line 2
T99 STRING ggscrlptlon of line

a. If stated, make sure to consider the following points:
e The parameter IRM is not alowed in the parameter list.

* Null strings have to be assigned to the parameters INM and INP
(eg. INM="")

» The paramters Txx have to be specified consecutively, starting with TOO.
For example, in case of 4 lines, the parameters TOO, TO1, T02, TO3, TO4
must be stated.

« The parameters Ixx responsible for the line content, like all other options,
don’t need to be specified consecutively.

b. Specify the text to be entered in the info block using the parameters Ixx. xx
represents the line numbersin the info block. You only have to state parameters for
the lines in which you wish to enter text. The total number of linesis defined in the
info definition file.

10-32 OPUS-NT Programming Bruker Optik GmbH

Miscellaneous OPUS Functions

10.12 Miscellaneous OPUS Functions

10.12.1 ExternalProgram

Starts an external program.

This function launches an external program, forwards parameters and supplies
the means of communication with the external program. DDE connections as

well as Named Pipes are supported.

ExternalProgram ([<File>:BlocklID], {...});

Parameter Value Description
XPF start as OPUS task
0 OPUS stgrts .the program, then breaks off all
communictation with the external program
1 program is not detached
XST type of program start and connection type
0 start the program; connection via a pipe
1 don’t stfs\rt the program; connection via the
server pipe
2 start the program; open a DDE connection
3 don't st_art the program; connection via the
server pipe
XPR Text in:;nsator: the program to be launched, includ-
XPA Text parameteres to be exchanged
XWI start 16bit program in itsown VDM
0 use common VDM
1 extraVDM
XWS window size at start
0 normal
1 maximized
2 minimized
3 hidden
XCW wait for program termination
0 only start program
wait for result/end
Bruker Optik GmbH OPUS-NT Programming 10-33

OPUS Command Reference

XSB stgrt in background mode — not supported by
Windows NT. Can be replaced by XWS

XEM 0S/2 spezific — no longer supported
XDM 0OS/2 spezific — no longer supported
XVP 0S/2 spezific — no longer supported
XPM <C/S> 0S/2 spezific —no longer supported
DDE transaction type

Bit 0 geléscht | don’t send command

1 poke

3 execute

5 request
DDS Text DDE server name
DDT Text DDE topic
DDI Text DDE item
DDD Text text-coded binary data

10.12.2 ParameterEditor

Changes the sample parameters.

This function changes the following parameters:

e sample name

» sampleform

e user name

» sample number

Note that the statement of all values is required when executing this function.
In addition, the axes |abels and scaling factors used for the axes can be entered.

ParameterEditor ([<File>:BlockID],{...});

10-34 OPUS-NT Programming Bruker Optik GmbH

Miscellaneous OPUS Functions

Parameter Value Description
CNM Text user name
SNM Text sample nname
SFM Text sample form
RSN Zahl sample number
XTX Text X-axis |abel
YTX Text Y-axis label
ZTX Text Z-axis labe
XAF Number X-axis scaling factor
YAF Number Y-axis scaling factor
ZAF Number Z-axis scaling factor
10.12.3 Plot
Plots spectra.

This function does not change the spectrum.

Plot ([<File>:Blockl D], {...});;

Parameter Value Description
PDV output device

Printer printer

Clipboard clipboard
SCP Text path of the template used for plotting
SCN Text name of the template used for plotting
PUN devices; currently not evaluated
POP Text output path; currently not evaluated
POF Text output file; currently not eval uated
PDH window handle; currently not evaluated
PL2 Number number of peaks to be labeled
PPA Text %?ddﬁfzveﬁ:?lrg;r;meters in astring that are used

PPA starts with FRM=n and defines how many frame parameters follow. For
each frame the following parameters (separated by commas) are necessary:

Bruker Optik GmbH

OPUS-NT Programming

10-35

OPUS Command Reference

Parameter Value Description

NPL Number number of spectrain the current frame
XSP Number X start frequency

XEP Number X end frequency

YMN Number lowest value of the Y axis

YMX Number highest value of the Y axis

ASE YES/NO AutoScal e the spectrum frame

CWN YES/NO use compressed wave numbers

COL Numbers colors of each curve, separated by commas

10.12.4 VBScript
Starts aVisualBasic script

This function loads and then runs a VisualBasic script. Parameters and data
blocks can be forwarded to the script

VBScript ([<File>:Blockl D], {...});

Parameter Value Description
VBS Text name of the script, including path
VBP Text parameters to be forwarded to the script
VBW wait for termination
0 immediate return after starting the script
1 wait for result/end
VBH start in background mode
0 start in foreground — script will be displayed
1 start in background — script will not be dis-
played

10-36 OPUS-NT Programming Bruker Optik GmbH

11 OPUS Parameter Reference

The reference section of this chapter presents a complete list of al OPUS
parameters. Please keep in mind, that currently some parameters are not yet
implemented.

OPUS distinguishes between parameters stored together with a spectrum and
such, that are used to control OPUS functions. Not all existing parameters of
the former type are necessarily saved in a spectrum file.

Three different types of data exist:

* numerical —the parameter is a number
* text —the parameter is atext

» list of values — the parameter is a text, but only certain values are
allowed. A list of possible valuesisincluded. The value on the left
side of the equal sign is returned to the macro, its explanation is

given on theright side.

Sample Parameters

The sample parameters stored with the spectrum:

SNM
SFM
CNM
HIS
PTH
EXP
PAT
NAM
NA2
ATX
XPP

(text)
(text)
(text)
(text)
(text)
(text)
(text)
(text)
(text)
(text)
(text)

Sample Name
Sample Form
Operator Name
History of Last Operation
M easurement Path
Experiment

Path of File
Filename

Ch. 2 Filename
Annotation text
Experiment Path

Data Block-Specific Parameters

These are specific parameters stored with a spectrum. There exists a separate
set of paratmetersfor each spectral data block stored in afile.

Standard Parameters

DPF
NPT
FXV
LXV

(numerical)
(numerical)
(numerical)
(numerical)

Data Point Format
Number of Data Points
Frequency of First Point
Frequency of Last Point

Bruker Optik GmbH

OPUS-NT Programming

111

OPUS Parameter Reference

CSF (numerical)
MXY (numerical)
MNY (numerical)
DXU (list of values)
WN =
MI =
NM =
LGW =
MIN =
SEC =
PNT =
EV =
MM =
CM =
MIS=
MUS =
DYU (list of values)
SC =
TR =
AB =
KM =
LA =
DR =
ABS=
REF =
TRA =
RRK =
IRK =
RTK =
ITK =
DF1 =
DF2 =
DAT (text)
TIM (text)

User-Defined Labedls

XTX (text)
YTX (text)
ZTX (text)
XAF (numerical)
YAF (numerical)
ZAF (numerical)

Derivatives, Smoothing

DER (numerical)
QS1 (text)
SMO (numerical)
QS0 (text)

Y - Scaling Factor

Y - Maximum

Y - Minimum

X Units

Wavenumber cm-1

Micron

Nanometers

L og Wavenumber

Minutes

Seconds

Points

ev

Millimeters

Centimeters

msec

psec

Y Units

Single channel

Transmittance [%0]

Absorbance Units

Kubelka Munck

Log Absorbance

Diffuse Reflectance

Absorbance

Reflectance

Transmittance

Re (Amplitude Reflectivity Coefficient)
Im (Amplitude Reflectivity Coefficient)
Re (Amplitude Transmission Coefficient)
Im (Amplitude Transmission Coefficient)
Re (Dielectric Function')

Im (Dielectric Function)

Date of Measurement

Time of Measurement

X - axis Labd
Y - axis Label
Z axis Label
X axis factor
Y axis factor
Z axis factor

Derivative

Derivative

Smoothing points for der.
Smoothing points

11-2 OPUS-NT Programming

Bruker Optik GmbH

3D Files

GSQ (numerical)
AOX (numerical)
AQY (numerical)
DDX (numerical)
DDY (numerical)
NPX (numerical)
NPY (numerical)
SN Ratio

NF1 (numerical)
NF2 (numerical)
SN1 (numerical)
SN2 (numerical)
SN3 (numerical)
SN4 (numerical)
SNF (numerical)

Frequency Calibration

MWC (numerical)
AWC (numerical)

GS Base Quality
Map Origin X
Map Origin Y
Map Delta X
Map DeltaY
Map Pointsin X
Map Pointsin Y

First S/N Frequency Limit
Second S/N Frequency Limit
SIN (RMS)

SIN (Peak-to-Peak)

Max. Ordinate in S/N Region
Min. Ordinate in S/N Region
SN Flags

Mult. for Freg.Calib
Add for Freq.Calib

Post-Sear ch Specturm Extraction

HQU (numerical)
COoM (text)

Hit Quality
Compound Name

Instrument Parameters

Parameters used for the spectrometer settings that are stored together with a

spectrum:

DPH (numerical)
MOF (numerical)
NLA (numerical)
NLB (numerical)
HFL (numerical)
LFL (numerical)
DFR (numerical)
DFC (numerical)
HFF (numerical)
LFF (numerical)
ASG (numerical)
ARG (numerical)
ALF (numerical)
AHF (numerical)
ASS (numerical)
ARS (numerical)
GFW (numerical)

Demod. Phase (Degrees)
Modulation Frequency

NL Alpha

NL Beta

High Folding Limit

Low Folding Limit

Digital Filter Reduction
Number of Filter Coef.
Digita Filter HFL

Digita Filter LFL

Actual Signal Gain

Actual Ref. Signal Gain
Actual Low Pass Filter
Actua High Pass Filter
Number of Sample Scans
Number of Background Scans
Number of Good FW Scans

Bruker Optik GmbH

OPUS-NT Programming

113

OPUS Parameter Reference

Number of Good BW Scans
Number of Bad FW Scans
Number of Bad BW Scans
Scan time (sec)

Running Sample Number
Peak Amplitude

Peak Location

Backward Peak Amplitude
Backward Peak Location
Sample Spacing Multiplicator
Sample Spacing Divisor
Switch Gain Position

Gain Switch Window
Instrument Type

Interface Type for Optic

1 = 22/28/55/66/88/120/100

GBW (numerical)
BFW (numerical)
BBW (numerical)
DUR (numerical)
RSN (numerical)
PKA (numerical)
PKL (numerical)
PRA (numerical)
PRL (numerical)

SSM (numerical)

SSP (numerical)

SGP (numerical)

SGW (numerical)

INS (text)

ITF (list of vaues)
0=25/48
2=85/110/113

SIM (numerical)

DEB (numerical)

LOG (numerical)

ADR (numerical)

AD2 (numerical)

RMX (numerical)

PLL (numerical)

FFT (numerical)

MXD (numerical)

FOC (numerical)

ABP (numerical)

LWN (numerical)

RLW (numerical)

RLP (numerical)

RDY (list of values)
0=OFF
1=0ON

RCO (list of values)
NO =No
YES=Yes

RC1 (list of values)
NO =No
YES=Yes

SRT (numerical)

ERT (numerical)

MAX (numerical)

MAY (numerical)

AN1 (numerical)

AN2 (numerical)

Simulation Mode

Debug Printer Mode
Logfile for Measurement
AQP Adress

AQP2 Adress

Resolution Limit
Maximum PLL Setting
Maximum FT Sizein K’s
Maximum ADC Satein Hz
Focal Length

Absolute Peak Posin Laser*2
Laser Wavenumber

Raman Laser Wavenumber
Raman Laser Power in mW
Ready Check

Raman Background Corrected

Raman Scattering Corrected

Start time (sec)

End time (sec)

X Measurement Position
Y Measurement Position
Analog Signal 1

Analog Signal 2

Data Acquisition Parameters

Parameters used for the acquisition of data that are stored together with a spec-

trum:

114 OPUS-NT Programming

Bruker Optik GmbH

CH2 (list of values) Channel 2
0=OFF
1=0ON
SGN (list of values) Signal Gain, Sample
-1 = Automatic
0=1

NOoO o WDNPRE

L1 1 1 T 1 I A 0

gwl—\oobr\)
N O

128

SG2 (list of values) Signal Gain, Sample
-1 = Automatic
0=1

NOoO O~ WN PR
L1 1 T 1 1 O A A 0
N O

ngl—\oobm
(o]

RGN (list of values) Signal Gain, Background
-1 = Automatic

WE0ORADNPEF
N O

~No ok WNEFEO
[L e O e T 1|

[ER
N
(o]

RG2 (list of values) Signal Gain, Background
-1 = Automatic
0=1

a b~ wnN PR
I m1mnn
WE0OR~DN
N O

6=64
7=128
GSW (numerical) Gain Switch Window
GSG (list of values) Gain Switch Gain
1=0FF
8=0ON
AQM (list of values) Acquisition Mode
SN = Single Sided
DN = Double Sided
SF = Single Sided Fast Return
SD = Single Sided, Forward-Backward
DD = Double Sided, Forward-Backward
DF = Double Sided, Fast Return

Bruker Optik GmbH OPUS-NT Programming 11-5

OPUS Parameter Reference

NSS
NSR
REP
DLR
MIN
MIR
SOS
SOT

STR

COR

DLY
DEL
HFW
LFW
RES
RE2
TDL
PLF

SPO

RPO

WAR

(numerical) Sample Scans
(numerical) Background Scans
(numerical) Repeat Count
(numerical) Delay Between Repeatsin Sec.
(numerical) Sample Meas. Duration in Min.
(numerical) Background Meas. Duration in Min.
(numerical) Scantime or Scans
(list of values) Sample Scans or Time
0 = Scans
1 = Minutes
(list of values) BG Scansor Time
0 = Scans
1 = Minutes
(list of values) Correlation Test Mode
NO = No

LO = Around Peak,Low
HI = Around Peak,High
FUL = Full Igram length

(numerical) Stabilization Delay
(numerical) Delay Before Measurement
(numerical) Wanted High Frequency Limit
(numerical) Wanted Low Frequency Limit
(numerical) Resolution

(numerical) Resolution Ch.2

(numerical) Todolist

(list of values) Result Spectrum

TR = Transmittance

AB = Absorbance

KM = Kubelka Munk
RAM = Raman Spectrum
EMI = Emission

RFL = Reflectance

LRF = Log Reflectance
ATR = ATR Spectrum
PAS = PAS Spectrum

(list of values)

Sample Number

0 = Background Position

1=1
2=2

63 =63

(list of values)

Background Number

0 = Background Position

1=1

63 =63

(list of values)

4ns
5ns
8ns
10 ns
20ns
24ns

Tr. Rec. Resolution

11-6

OPUS-NT Programming

Bruker Optik GmbH

WAS
WRC
WTD
WPD
WXP

WSS

waw

WXD
WDV

WIR

25ns

33ns

40 ns

50 ns

100 ns

200 ns

250 ns

400 ns

500 ns

lus

2us

25pus

4 us

5us

10 us

25us

40 ps

50 ps

100 ps
(numerical) Tr. Rec. Slices
(numerical) Tr. Rec. Repeat Count
(numerical) Tr. Rec. trigger Delay in points
(numerical) Tr. Rec. Stab. Delay after Stepping
(list of values) Tr. Rec. Trigger Mode

1 =Internal

2 = External Positive Edge

3 = External Negative Edge
(list of values) Tr. Rec. Sampling Source

0 = Externa

1=Linear Timescale

2 = Compressto Log. Timescale
(list of values) Tr. Rec. Channel 2 Weighting

0 = Unused

1 = Usefor Phase Correction

2 = Usefor Weighting

3 = Usefor Weighting, discard if < Threshold

4 = Discard Experiment if < Threshold
(numerical) Tr. Rec. Experiment Delay
(list of values) Transient Recorder

1=PAD82A

2=PAD82B

3=PAD82

4 =PAD1232a

5=PAD1232b

6 = PAD1232c
(list of values) Tr. Rec. Input Range

1=+200mV

2 = +500mV

3=z1V

22

000\

co~NOO O~
o n
OO0+ I+
N R B
<<

Bruker Optik GmbH

OPUS-NT Programming 11-7

OPUS Parameter Reference

WTH (numerical) Tr. Rec. Weighting Threshold
TRR (numerical) TRS Resolution in micro sec
TRS (numerical) TRS Slices
TRC (numerical) TRS Repeat Count
TRD (numerical) TRS Exp Delay in msec
TRP (numerical) TRS Positionning Delay
TRM (numerical) TRS Experiment Trigger Mode
TRX (numerical) TRS Sampling Source
ITS (numerical) Interleaved Time Slices
ISP (numerical) Interleave Time Res. aesec
IDL (numerical) Interleave Trigger Delay assec
ITR (numerical) Max. Exp. Trigger Rate Hz
STD (numerical) Step Scan Pos. Delay in msec
STC (numerical) Step Scan Coadd Count
SMX (numerical) Multiplexer positions
SMD (numerical) Modulation (0=OFF 1=MOD 2=MOD-DEMOD
4=0LD

PHASE 8=AMPL)
SMA (numerical) Scanner Modulation Amplitude
SMF (numerical) Scanner Modulation Frequency
AMF (numerical) Ampl. Modulation Frequency
ADA (numerical) Ampl. Demodulation Angle
PDA (numerical) Phase Demodulation Angle
CIN (numerical) Chrom Integrate Trace
CIM (text) Chrom Integration Method
CDT (numerical) Chrom Display Trace
CDSs (numerical) Chrom Display Spectrum
CT™M (numerical) Chrom Start Trigger Mode
csv (numerical) Chrom Save Mode
CTL (numerical) Chrom Trigger Level
GSS (numerical) Gram Schmidt Size
GSO (numerical) Gram Schmidt Offset
GSP (numerical) Gram Schmidt Points
CLD (numerical) Limit Run Duration
CMD (numerical) Max Run Duration
MLS (text) Map XY List
MPO (numerical) Map Port (com 1...n)
MSH (numerical) Map Shape (1..6)
NDV (list of values) Map Device

0 = Internal (MCL Stage)
1 = Microscope (MCL Stage)

NOX (numerical) Map Origin X
NOY (numerical) Map Origin Y
NSX (numerical) Map Spacing X
NSY (numerical) Map Spacing Y
NGX (numerical) Map Gram Schmidt X Base
NGY (numerical) Map Gram Schmidt Y Base
MEX (text) Map Measurement Experiment
MUN (list of values) Map units
0 = Micron
1=mm
2=cm
MPX (numerical) Map # Pos X
MPY (numerical) Map # Pos Y

11-8 OPUS-NT Programming Bruker Optik GmbH

MSS (numerical) Map Save Spectra

MCI (numerical) Map Compute Integrals
MIM (text) Map Integration Method
MCM (numerical) Map Macro

MEM (text) Map Evaluation Macro
MSV (numerical) Map Save Video

MVM (text) Map Video Method

MRL (numerical) Map Relative Origin

MGT (numerical) Map Gram Schmidt

MGS (numerical) Map Gram Schmidt Size
MGO (numerical) Map Gram Schmidt Offset
MGP (numerical) Map Gram Schmidt Points
MXS (numerical) Meas x-Startpoint Display
MXE (numerical) Meas x-Endpoint Display
MYS (numerical) Meas y-Minimum Display
MYE (numerical) Meas y-Maximum Display
MDM (numerical) Meas Display Mode

MDP (numerical) Meas Display Product
XS2 (numerical) Meas2 x-Startpoint Display
XE2 (numerical) Meas2 x-Endpoint Display
YS2 (numerical) Meas2 y-Minimum Display
YE2 (numerical) Meas2 y-Maximum Display

FT-Parameters

Parameters used for the Fourier Transformation, that are stored together with a
spectrum:

AF2 (list of values)
BX = Boxcar
TR = Triangular
4P = Four Point
HG = Happ-Genzel
B3 = Blackman-Harris 3-term
B4 = Blackman-Harris 4-term
NBW = Norton-Beer, Weak
NBM = Norton-Beer, Medium
NBS = Norton-Beer, Strong
US1 = User One
US2 = User Two
HQ2 (numerical) End Freguency Limit for File
LQ2 (numerical) Start Frequency Limit for File
PH2 (list of vaues) Phase Correction Mode
ML = Mertz
SM = Mertz Signed
PW = Power Spectrum
MLP = Mertz / No Peak Search
SMP = Mertz Signed / No Peak Search
PWP = Power / No Peak Search
SP2 (list of values) Stored Phase Mode
NO =No
ZF2 (list of values)
1=1

Apodization Function

Zero Filling Factor

Bruker Optik GmbH OPUS-NT Programming 11-9

OPUS Parameter Reference

2=2
4=4
8=8
16=16
32=32
64 = 64
128 =128
256 = 256
512 =512
APF (list of values) Apodization Function
BX = Boxcar
TR = Triangular
4P = Four point
HG = Happ-Genzel
B3 = Blackman-Harris 3-Term
B4 = Blackman-Harris 4-Term
NBW = Norton-Beer, Weak
NBM = Norton-Beer, Medium
NBS = Norton-Beer, Strong
USL = User One
US2 = User Two
HFQ (numerical) End Frequency Limit for File
LFQ (numerical) Start Frequency Limit for File
PHZ (list of values) Phase Correction Mode
ML = Mertz
SM = Mertz Signed
PW = Power Spectrum
MLP = Mertz / No Peak Search
SMP = Mertz Signed / No Peak Search
PWP = Power / No Peak Search
MS = Mertz / Stored Phase
NO = No/ Save Complex Data
PHR (numerical) Phase Resolution
NLI (numerical) Non Linearity Correction
NL2 (numerical) Non Linearity Correction
DIG (numerical) Digital Filter
DI2 (numerical) Digital Filter
SPZ (list of values) Stored Phase Mode
NO =No
ZFF (list of values) Zero Filling Factor
1=1
2=2
4=4
8=8
16=16
32=32
64 = 64
128 =128
256 = 256
512 =512

11-10

OPUS-NT Programming Bruker Optik GmbH

Parameters of the Optics

Parameters used by the optics that are stored together with a spectrum:

IRS
UNI
APT
AP2
BMS
DTC
DT2
OPF
OF2
PGN
CHN
DMX

ADC

SRC
VSC
VEL
HPF
LPF
SRL
RFL
POL

(numerical)
(text)
(list of values)
(list of values)
(list of values)
(list of values)
(list of values)
(list of values)
(list of values)
(list of values)
(list of values)
(list of values)
1=ADC1
2=ADC?2
3=0ON
(list of values)
0=OFF
1=1
2=2
3=1&2
(list of values)
0=OFF
1=0ON

2 = Extended

(list of values)
(numerical)
(list of values)
(list of values)
(list of values)
(numerical)
(numerical)
(list of values)

91 = Out

0=0g

90 = 90g

Iris Aperture (micron)

Command string for UNI

Aperture Setting, depending on the Optics
Aperture Setting, depending on the Optics
Beamsplitter Setting, depending on the Optics
Detector Setting, depending on the Optics

Detector Setting

Optical Filter Setting, depending on the Optics
Optical Filter Setting, depending on the Optics
Preamplifier Gain, depending on the Optics

M easurement Channel, depending on the Optics
Multiplexed Data

Ext. Analog Signals

External Synchronisation

Source Setting, depending on the Optics
Variable Velocity (Hz)

Scanner Velocity, depending on the Optics
High Pass Filter, depending on the Optics
Low Pass Filter, depending on the Optics
Raman Laser Power(mW)

Raman Flags
Polarizer

Parameters of OPUS Functions

Parameters of the OPUS Functions, sorted by functionality. You will find

detailed information about these functions in chapter 11.

General

FIM

(numerical)

S/N Ratio

NF1

(numerical)

File name Incrementing Mode

First S/N Frequency Limit

Bruker Optik GmbH

OPUS-NT Programming

11-11

OPUS Parameter Reference

NF2 (numerical) Second S/N Frequency Limit
SN1 (numerical) S/N (RMS)
SN2 (numerical) S/N (Peak-to-Peak)
SN3 (numerical) Max. Ordinate in S/N region
SN4 (numerical) Min. Ordinate in S/N region
SNF (numerical) S/N Flags
Subtract
SX1 (numerical) Start Frequency for Autosub
SX2 (numerical) End Fregquency for Autosub
SUN (numerical) Number of Spectrafor Subtract
SUB (numerical) Subtract Mode
Assemble GC
QA6 (text) Assembled GC Spectrum Path
QA7 (text) Assembled GC Spectrum
QA8 (numerical) Assembled GC Start Frequency
QA9 (numerical) Assembled GC End Frequency
QAA (numerical) Assembled GC Whole x-Range
QAB (list of values) Assembled GC Z Units

SEC = Seconds

MIN = Minutes

NM = Nanometers
MI = Micrometers
MM = Millimeters
CM = Centimeters
WN = Wavenumber 1/cm
LGW = Log Wavenumber

EV =eV

PNT = Points

MIS = msec

MUS = &esec

NON = None
QAC (numerical) Assembled GC Z-Start
QAD (numerical) Assembled GC Z-End
LST (text) List of Filenames
BLK (text) Blocktype to Assemble
QMO0 (list of values) Assembled Map Units

M| = Micrometers
MM = Millimeters
CM = Centimeters

PNT = Points
QM1 (numerical) Assembled Map x points
QM2 (numerical) Assembled Map Delta x
QM3 (numerical) Assembled Map y points
QM4 (numerical) Assembled Map Deltay

Conformity Test

QCF (text) Conform. Test Methd. Path
QCG (text) Conform. Test Methd. File
CSM (text) CSM Method name

11-12

OPUS-NT Programming

Bruker Optik GmbH

Post-FT ZFF

PZF (numerical) Post Zerofill Factor

PZS (numerical) Post Zf Start Frequency

PZE (numerical) Post Zf End Fregency

PWR (numerical) Post Zf Whole Range (0: no; 1: yes)

Fourier Transformation

FHZ (list of values) FT Phase Correction Mode
ML = Mertz
SM = Mertz Signed
PW = Power Spectrum
MS = Mertz / Stored Phase
NO = No/ Save Complex Data
FM = Forman
FS = Forman / Stored Phase
FP = Forman / Preapodized
DP = Doubled Phase
FTA (list of values) FT Apodization Function
BX = Boxcar
TR = Triangular
4P = Four point
HG = Happ-Genzel
B3 = Blackman-Harris 3-Term
B4 = Blackman-Harris 4-Term
NBW = Norton-Beer, Weak
NBM = Norton-Beer, Medium
NBS = Norton-Beer, Strong

US1 = User One

US2 =User Two
FZF (list of values) FT Zero Filling Factor

1=1

2=2

4=4

8=8

16=16

32=32

64 = 64

128 =128

256 = 256

512 =512
FTS (numerical) FT Start Frequency
FTE (numerical) FT End Fregency
FTR (numerical) FT Resolution Limit
FHR (numerical) FT Phase Resolution
FLR (numerical) FT Limit Resolution
FTT (numerical) FT todolist
FBW (numerical) Forward/Backward Igram
FNL (numerical) Non Linearity Correction
FNC (numerical) FT Detector Cutoff Freq.
FNE (numerical) FT Modulation Efficiency
FSM (list of values) FT ZPD Search Mode

Bruker Optik GmbH OPUS-NT Programming

11-13

OPUS Parameter Reference

AL = Absolute largest Value
MX = Maximum

MN = Minimum

M1 = Mid between Min/Max
NO = No Peak Search

MA = Manually

TW = Mid between largest two
TP = Take from stored Phase

FPP (numerical)
FSR (numerical)
FSY (numerical)

ZPD Position
ZPD Search Range
FT Symmetry

Kramers-Kronig Transformation

KKS (numerical)
KKE (numerical)
KWR (numerical)
KMT (numerical)
KKR (numerical)

Deconvolution

KKT Start Frequency

KKT End Fregency

KKT Whole Range

KKT materia (extrapol + cond/not cond)
KKT result

DEF (numerical) Deconvolution Factor
DNR (numerical) Deconv Noise Reduction
DES (numerical) Deconv Start Frequency
DEE (numerical) Deconv End Frequency
DWR (numerical) Deconv Whole Range
DSP (list of values) Deconv Line Shape

LO = Lorentz

GA = Gauss

Curve Fitting

FXS (numerical)
FXE (numerical)
FWR (numerical)
Inverse FT

RXS (numerical)
RXE (numerical)
RWR (numerical)
RSY (numerical)
Symmetric FT
FPS (numerical)
LPS (numerical)
WRS (numerical)
SSY (numerical)

FIT Start Frequency
FIT End Frequency
FIT Whole Range

Reverse FT Start Frequency
Reverse FT End Frequency
Reverse FT Whole Range
Reverse FT Symmetry

Symmetric FT First Point
Symmetric FT Last Point
Symmetric FT Whole Range
Symmetric FT Symmetry

11-14

OPUS-NT Programming

Bruker Optik GmbH

2D Correlation

2DM (list of values) Correlation Mode

SQ = Squared Correlation

RG = Regression

CO = Correlation

SY = Synchron

AS = Asynchron
2XS (numerical) 2D X Start Frequency
2XE (numerical) 2D X End Frequency
2WR (numerical) 2D Whole X Range
2YS (numerical) 2D Y Start Frequency
2YE (numerical) 2D Y End Frequency
2WY (numerical) 2D Whole Y Range
2DR (numerical) 2D Digital Resolution
2DF (numerical) 2D Reduction Factor

DM A Extraction

DMA (numerical)
DMF (numerical)
DMP (numerical)
DMS (numerical)

Smoothing, Derivative

DMA extraction mode

DMA frequency of strain (Hz)
DMA phase of strain

DMA additional phase shift

QSP (numerical) Number of Smoothing Points
QOD (numerical) Order of Derivative
Compare Spectra
QFX (numerical) Lower Compare Frequency Range
QLX (numerical) Upper Compare Frequency Range
QWR (numerical) Whole x-Range (0: no; 1. yes)
| dentitity Test
QFB (text) Identity Test Methods
QFC (text) M ethod name
QFD (numerical) Use AQP Flag (0: No; 1: Yes)
QFE (numerical) Check Best Hit (0: No; 1: Yes)
QFF (numerical) Expected Reference ID
QFH (numerical) 1st SNM char. for check
QFI (numerical) Length of SNM part for check
QFJ (numerical) Ident: O: Analy; 1: Add List; 2: Rem. All
QFK (text) Ident: Path of Fl. to be Added
QFL (text) Ident: Name of Fl. to be Added
QIO (numerical) Ident: BlockID of Fl. to be Added
Q1 (list of vaues) Sort for Expected Reference

SNM = Sample Name

ID=1D

FIL = File Name

Bruker Optik GmbH

OPUS-NT Programming

11-15

OPUS Parameter Reference

Ql2 (numerical) 1st SNM Char. for Sorting
QON (binér) Qldnt XRanges
QQO (binér) Qldnt Deriv
Cluster Analysis
QCA (text) Method Path
QCB (text) Method Name
QCH (text) text-List Path
QCl (text) text-List Name (incl. Ext.)
QCJ (list of values) Print/Plot
NO =No

DEN = Dendrogram
DIA = Diagnosis

BOT = Both
QCK (list of values) For Making Dendro
FIL = File Name

SNM = Sample Name
NUM = File Number
NO = No Name Markers

QCL (numerical)
Peak Picking
FXP (numerical)
LXP (numerical)
QPO (list of values)
NO = No
YES=Yes
QP3 (numerical)
QP4 (list of values)
NO =No
YES=Yes
QP5 (numerical)
QP6 (list of values)
NO =No
YES=Yes
QP7 (numerical)
QP8 (list of values)
NO =No
YES=Yes
QP9 (numerical)
PTR (numerical)
PPM (numerical)
NSP (numerical)
PSM (numerical)
WHR (numerical)
Black Body
QTE (numerical)
QPH (numerical)

of Classes (for Diagn.)

Peak Pick Start Frequency
Peak Pick End Freguency
Precision User-Defined

Digits After Decimal Point
Upper Peak Limit

Peaks < [%]
Upper Peak Limit Abs.

Peaks < [abs.]
Lower Peak Limit Abs.

Peaks > [abs.]
Peaks > [%]

Peak Pick Mode (Auto,Max,Min)
Number of Smoothing Points

Peak Search Method

Whole x-Range (0: no; 1: yes)

New Entries
0:Energy; 1:Photons

11-16

OPUS-NT Programming

Bruker Optik GmbH

Raman Correction

QCO (numerical) 1: Raman Background Correction
QC1 (numerical) 1: Raman Scattering Correction
QC2 (numerical) 1: Undo Correction
QC3 (text) Calibration Lamp Spectrum Path
QC4 (text) Calibration Lamp Spectrum
QC5 (numerical) Temp. of Calibration Lamp
Averaging
QA0 (numerical) 1: Consider Scans
QA1 (numerical) 1: Normalized Spectra
QA2 (numerical) 1: Average Report
QA3 (text) Av. Spectrum Path
QA4 (text) Av. Spectrum
QA5 (numerical) 1: Addto List in Ident Method
QAE (list of values) Create Std-Dev Spectrum
NO =No
YES=Yes
QAF (list of values) Update Av. Spectrum
NO = No
YES=Yes
QAG (text) Updated Av. Spectrum Path
QAH (text) Updated Av. Spectrum
QAL (list of values) Av.: Source of Orig. Spectra
LIS=FileList
FIL = File Name
QAM (text) Av: Orig. Spectra Path
QAN (text) Av: Orig. Spectra
QAO (numerical) Av: Orig. SpectraBlock ID
QDO (numerical) 1: New Entries
Quality Test
QQ0 (numerical) x-Start (x range 0)
QQ1 (numerical) x-End (x range 0)
QQ2 (numerical) ymax-ymin(x range 0) must be >
QQ3 (numerical) ymax-ymin(x range 0) must be <
QQ4 (numerical) x-Start (x range 1)
QQ5 (numerical) x-End (x range 1)
QQ6 (numerical) x-Start (x range 2)
QQ7 (numerical) x-End (x range 2)
QQ8 (numerical) x-Start (x range noise)
QQ9 (numerical) x-End (x range noise)
QQA (numerical) y’max (X range noise) must be <
QQB (numerical) S/Noise (x range 1) must be >
QQC (numerical) S/Noise (x range 2) must be >
QQD (numerical) x-Start (x range water)
QQH (numerical) x-End (x range water)
QQE (numerical) y’'max (X water) must be <
QQF (numerical) S/Water (x range 1) must be >
QQG (numerical) S/Water (x range 2) must be >

Bruker Optik GmbH

OPUS-NT Programming

11-17

OPUS Parameter Reference

QQl (numerical) x-Start (x range fringes)
QQJ (numerical) x-End (x range fringes)
QQK (numerical) y’'max (x fringes) must be <
QOQL (text) Q-Test Method Path

QQM (text) Q-Test Method Name

2D Correlation

QC6 (numerical) 2D-Corr. Whole x-Range
QC7 (numerical) 2D-Corr. Start Frequency
QCs8 (numerical) 2D-Corr. End Freguency
QC9 (list of values) 2D-Corr. Limit Resolution
NO = No
YES=Yes
QCC (numerical) 2D-Corr. Reduction Factor
QCD (list of values) 2D-Corr. Synchronous
NO =No
YES=Yes
QCE (list of values) 2D-Corr. Asynchronous
NO =No
YES=Yes
Display Limits
XSP (numerical) Left X Display Limit
XEP (numerical) Right X Display Limit
YMN (numerical) Lower Y Display Limit
YMX (numerical) Upper X Display Limit
XAU (list of values) X - Axis Scaling
NO = Linear

Y ES = Compressed

Nor malization

NME (numerical) Method (1: Min-Max, 2: Vector, 3: Offset)
NFX (numerical) First Point

NLX (numerical) Last Point

NWR (numerical) Whole Range (0: no, 1: yes)

Frequency Calibration

QFO (list of values) Restore Orig. Calib.
NO =No
YES=Yes
MWC (numerical) Mult. for Freq.Calib
AWC (numerical) Add for Freq.Calib

Baseline Correction

BME (numerical) Baseline Method
BCO (numerical) Exclude CO2 - Bands
BPO (numerical) Number of Baseline Points

11-18 OPUS-NT Programming Bruker Optik GmbH

Make Compatible

CME

AB - TR

CCM

Spectrum Calculator

CDI
FOR

Cut

CFX
CLX

Generate Straight Line

GFX
GLX

(numerical)

(numerical)

(numerical)
(text)

(numerical)
(numerical)

(numerical)
(numerical)

Convert Spectra

CsD (numerical)
CarbOx Analysis
FFO (numerical)
FFC (numerical)
FME (numerical)
FUN (numerical)
FRT (numerical)
FST (numerical)
FSI (numerical)
FCN (numerical)
FOF (numerical)
FSL (numerical)
FCO (numerical)
FCC (numerical)
Epi Analysis

EFX (numerical)
ELX (numerical)
EWR (numerical)
EMO (numerical)
EN1 (numerical)
EN2 (numerical)
EN3 (numerical)
ES1 (numerical)
ES2 (numerical)

Method (2: Interpolation, 3: Reduce Resolution)

Method

Permanent Dialog
Formula

First Point
Last Point

First Point
Last Point

Method

Factor for Oxygen

Factor for Carbon

Carbox Method

Units

Reference Wafer Thickness
Wafer Thickness

Free Carrier Type

Charge Carrier Concentration
Offset

Slope

Oxygen Conversion Coefficient
Carbon Conversion Coefficient

First Point

Last Point

Whole Range (0: no, 1: yes)
Mode

Refraction Index nl
Refraction Index n2
Refraction Index n3

Sign first echo-peak

Sign second echo-peak

Bruker Optik GmbH

OPUS-NT Programming

11-19

OPUS Parameter Reference

1

cm= - [

LNE (numerical)
LME (numerical)
LYS (numerical)
LCF (numerical)
QLO (numerical)
QL1 (numerical)
QL2 (numerical)
QL3 (numerical)
Integration

LPT (text)

LFN (text)

LRM (numerical)
Quant

QPT (text)

QFN (text)

QP1 (text)

QF1 (text)

QP2 (text)

QF2 (text)

CAP (text)

CAF (text)

GAP (text)

GAF (text)

HEV (numerical)
HWV (numerical)
HCT (numerical)
HDF (numerical)
HAR (numerical)
QSM (numerical)
FLC (numerical)
FLS (numerical)
LLF (numerical)
QPP (numerical)

New Entry (cm-1/micron)

Method (cm-1/micron)

Y scale (cm-1/micron)

Max. Compression Factor

Whole x-Range (0: no; 1. yes)

L ower Compare Frequency Range
Upper Compare Frequency Range
Data Points

Integration Method Path
Method Filename
Integration Report Storage Mode

File List Path

File List Name

Quant 1 Method Path

Quant 1 Method

Quant 2 Method Path

Quant 2 Method

Unscrambler Model Path
Unscrambler Model Name

PL Splus/IQ Calibration File Path
PL Splus/IQ Calibration File Name
Extract Vol [ml]

Water Vol []

Cédl Thickness[cm]

Dilution Factor

Aromatics

No of Smoothing Points

F Prob Limit Concentration Outliers
F Prob Limit Spectral Ouitliers
Leverage Limit Factor

Quant 2 Preprocessing Options

Plot Report Parameters

GMS
GMA
GMC
GXS
GYS
GDX
GDY

(numerical)
(numerical)
(numerical)
(numerical)
(numerical)
(numerical)
(numerical)

Marker Size

Marker Symbol small circle
Marker Color CLR_NEUTRAL
Frame X Position 3 cm
FrameY Position 2 cm
Framedx 12 cm

Framedy 12 cm

11-20

OPUS-NT Programming

Bruker Optik GmbH

Info Parameters, JCAMP Setup

INP
IFP
INM
IFN
IDS

Macro Parameters

(text)
(text)
(text)
(text)
(text)

MPT (text)
MFN (text)
MDS (text)
GRAM S Export
GMN (text)
GMD (text)

Info text Path

Correlation Table Path
Info Definition Filename
Info Definition Filename
Info Definition Description

Macro Path
Macro Filename
Macro Description

Macro Filename
Macro Description

Data Path Parameters

WOP
DAP
FMP
DAF
QL4

(text)
(text)
(text)
(text)
(numerical)

Work File Path
DataFile Path

File Manager Path
initial filename for load
Filter Index

Parameters for Post-Run Extraction

EXS (numerical)
EXE (numerical)
ENT (numerical)
ENE (numerical)
ECO (numerical)
XTP (text)

XTN (text)

XTI (numerical)
COL (numerical)
EAB (numerical)
ELF (numerical)
Simulation

SXS (numerical)
SXE (numerical)
SLA (numerical)
SER (numerical)
SEI (numerical)
SFP (numerical)
SFS (numerical)
SVA (numerical)
SVB (numerical)

Extract from start of file
Extract to end of file

Entry to extract from

Entry to extract to

Coadd all to one

Extract Path

Extract Filename

Increment Name (1=Name O=Ext)
Spectra Color

Abort extraction if file exists
L oad extracted files

Simul Start Frequency
Simul End Frequency
Simul Angle Degrees
Simuls Epsilon Re[]
Simuls Epsilon Im[]
Simuls Plasma Frequency
Simuls Scatter Frequency
Simuls Vaence A
SimulsVaenceB

Bruker Optik GmbH

OPUS-NT Programming

11-21

OPUS Parameter Reference

SvC (numerical)
SVG (numerical)
SZL (numerical)
SWR (numerical)
SXP (numerical)
SLI (numerical)
SLP (numerical)
SRI (numerical)
SFV (numerical)
SPC (numerical)
SDL (numerical)
SDF (numerical)
SDV (numerical)
SCQ (list of values)

SimulsVaenceC

Simuls Energy Gap
Simuls Lattice Count
Simul Whole Range
Simul Points

Simul Light From

Simul Polarization

Simul Extract DF Re/Im
Simul DF Vaues Flag
Simuls Coherence
Simuls Lattice

Simuls Free Carriers
Simuls Valence Electrons
Simul Computed Quantity

ABS = Absorbance

REF = Reflectance

TRA = Transmittance

RRK = Amplitude Reflectivity Coefficient
RTK = Amplitude Transmission Coefficient

SPT (list of values)

Simuls Type

HOM = Homogenious
IHO = Inhomogenious

SPD (text)
SLS (text)
SDP (text)
SDE (text)
SDD (text)
SLF (text)

Extrapolation

QX0 (numerical)
QX1 (numerical)
QX2 (numerical)
QX3 (numerical)
QX4 (numerical)

Trace Calculation

QTO (list of values)
NO =No
YES=Yes

QT1 (list of values)
NO = No
YES=Yes

QT2 (text)

QT3 (text)

x Point Adaption

QAI (numerical)
QAJ (text)
QAK (text)

Simul Layer Density
Simul Layer Stack
Simul Layer DF

Simul Extract DF
Simul Layer DF File
Simul Layer Stack File

Extrapol R (0)
Extrapol R (inf.)
Extrapol il
Extrapol i2
Extrapol ny end

Trace Cal.: Peak Integrals

Trace Cal.: Trace Points by Macro

Trace Cal.: Macro Path
Trace Cal.: Macro Filename

Adapting: New Entries
Adapting: Method Path
Adapting: Method Name

11-22

OPUS-NT Programming

Bruker Optik GmbH

Manipulate GC Blocks

QM5
QM6
LBO
RS1

(text)
(text)
(text)
(text)

Manip. GC: Macro Path
Manip. GC: Macro Filename
Defaults for Load Box
Function Result

Parameter for the Library Search

LBN (text)

LB1 (text)

LBP (text)

LBT (text)

LTP (text)

LMT (text)

MTP (text)

LMN (numerical)
LMO (numerical)
LSM (numerical)
LBS (numerical)
LSS (numerical)
LPR (numerical)
LCP (text)

LP1 (numerical)
LP2 (numerical)
SSQ (numerical)
SSH (numerical)
SS1 (numerical)
SIH (numerical)
SPQ (numerical)
SPH (numerical)
STH (numerical)
SPA (numerical)
LID (text)

LAL (numerical)
SIN (text)

SIP (text)

PNP (text)

PPP (text)

MPP (numerical)
RNG (text)
Temperature Control
TWK (numerical)
TPO (numerical)
TPD (numerical)
TMP (numerical)
TCS (text)

TDV (list of values)

Library Name

Library List

Library Path

Info textfile Name

Path for Library text Definitions
Method File Name

Path for Library Method Definitions
Method 1D

Library Edit Mode

Library Store Mode

Spectrum Number

Search Sensitivity

Library Protection

Copyright Note

Password Read

Password Write

Minimum HQ for Spectrum Search
Maximum Hits for Spectrum Search
Spectrum Search Algorithm
Maximum Hits for Info Search
Minimum HQ for Peak Search
Maximum Hits for Peak Search
Maximum Hits for Structure Search
Peak Search Algorithm

Library Description

Structure Search Algorithm

Info Query Name

Info Query Path

Peak Query Name

Peak Query Path

Show Search Report immediately
Excluded Ranges File

Temperature work for thread
Temperature Port (com 1...n)
Use Com Defaults
Temperature

Temperature Command String
Temperature Control Device

0 = Eurotherm 800 Series
1 = Lake Shore 320

2 = Linkam 93 Series

3 = Eurotherm 2000 Series

Bruker Optik GmbH

OPUS-NT Programming

11-23

OPUS Parameter Reference

Rapid Scan TRS

RAT (text) TRS Method name

Communication Parameters

Y ou will find parameters used for data output etc. listed in chapter 10.

JCAMP Parameters

JCC (list of values) Generate JCAMP-DX Compound Files
1=Yes
0=No
ORP (list of values) Ordinate Precision
32 =32 Bit
16 = 16 Bit
DT (list of values) JCAMP-DX DataType
PAC = Packed
SQD = Squeezed/Dup
DD = Difference/Dup

Save, Save As, Send File

COF (numerical) Copy Flags
OEX (list of values) Overwrite Existing Files
1=Yes
0=No
REN (text) New File Name
SAN (text) 'Save As File Name
DAP (text) DataFile Path

Read Datapoint Table

DFN (text) File Name (Data Point Table)
XCO (numerical) x Column (Data Point Table)
YCO (numerical) y Column (Data Point Table)
OE1l (list of values) Overwrite (Data Point Table)
1=Yes
0=No
SOX (list of values) Sort X Values (Data Point Table)
1=Yes
0=No
QD1 (numerical) Max. Number of Data Points
QD2 (numerical) 1st Data Point Line

Write Datapoint Table

DPA (numerical) Decimal Places, Abscissa
DPO (numerical) Decimal Places, Ordinate
SEP (text) Separator
ADP (list of values) All Data Points

1=Yes

1124

OPUS-NT Programming Bruker Optik GmbH

YON

DBT

0=No

(list of values)

1=Yes
0=No
(numerical)

External Program

XPF
XST
XPR
XPA
XWI
XWS
XCW
XSB
XEM
XDM
XVP
DDE
DDS
DDT
DDI
DDD
VBS
VBP
VBW

(numerical)
(numerical)
(text)
(text)
(numerical)
(numerical)
(numerical)
(numerical)
(numerical)
(text)
(numerical)
(numerical)
(text)
(text)
(text)
(text)
(text)
(text)
(numerical)

Pipe Parameters

PIN (text)

PIS (text)

PIF (numerical)

Cco1 (numerical)

CO2 (numerical)

CcOo3 (numerical)

CFl (text)

CcoT (text)

TIO (numerical)

Plot Parameters

Parameters used to plot data.

PUN (list of values)
CM =cm
IN =inch

PLO (numerical)

LFO (text)

PL1 (numerical)

PL2 (numerical)

PL3 (numerical)

y Valuesonly

Data Block Type

Run as Opus Task

Start Server

Program Name
Parameters

Run in a Window
Window Size Option
Close Window on Exit
Start in Background
Windows Enhanced Mode
VDM Settings Filename
View Transactions
DDE Interaction

DDE Server Name
DDE Topic

DDE Item

DDE Data

VB Script Name

Script Parameters

Wait for Script

Pipe Name

Pipe String

Pipe Flags

COMmunication Flags

Separator/Terminator Bytes for COMmunication
Byte Count for COMmunication
COMmunication Output File

COMmunication Output text

Timeout

units (cm/ inch)

Peak Label Size

Peak Label Font

Option Flags

'’ Strongest Peaks to Label
Decimalsfor Label Numbers

Bruker Optik GmbH

OPUS-NT Programming

11-25

OPUS Parameter Reference

PL4
PL5
PL6
PL7
PL8
LGO

PDV
SCP
SCN
PRP
LPP
POP
POF
PLO
PF1
PFI
PLI
PRF
PPA
PWO
PDH
PTX
PLP
PRN
MLW
COs
MO0
MO1
MO2
MO3
MO04
MO05
MO6
MO7
M08
M09

(numerical)
(numerical)
(numerical)
(numerical)
(numerical)

(list of values)

NO = No

YES=Yes

(text)
(text)
(text)
(numerical)
(numerical)
(text)
(text)
(text)
(numerical)
(numerical)
(numerical)
(numerical)
(text)
(text)
(numerical)
(text)
(text)
(text)
(numerical)
(text)
(text)
(text)
(text)
(text)
(text)
(text)
(text)
(text)
(text)
(text)

Length Stroke0- 1
Length Stroke 1 - 2
Length Stroke 2 - 3
Distance Peak <--> Line
Peak Stroke Length
BRUKER Logo

Plot Device

Script Path

Script Name

Printer Port (LPTn)

Lines per Page

Plot & Print Output Path
Plot & Print Output File Name
Print Log File Name

Plot Option Flags

First Item Printed

Last Item Printed

Print Option Flags

Polyline Parameters

Plot WY SIWY G Options
Plot Dialog Window Handle
Print text

Print Log Position on Screen
Print Device

Minimum Spectrum Line Width in Plot
Color Settingsin Plot

Plot Message # 0

Plot Message # 1

Plot Message # 2

Plot Message # 3

Plot Message # 4

Plot Message # 5

Plot Message # 6

Plot Message # 7

Plot Message # 8

Plot Message # 9

11-26

OPUS-NT Programming

Bruker Optik GmbH

Overview of Available Functions

12 The C/S-Interpreter and its
Commands

The Client/Server Interpreter is the module of OPUS responsible for processing
commands received through the Pipe-, DDE- or Scripting interface. Therefore,
thelist of commands is the same for all three interfaces.

The following chapters mainly address users who intend to write their own pro-
grams and link them to OPUS or OPUS macros. This is achieved with the
OPUS command External Program, which was described earlier. In the fol-
lowing we expect the user to be familiar with this command and its options.

A part of these commands was already available under OPUS OS/2 in form of
the Client/Server function. Hence, in the following the commands are divided
in old and new ones.

12.1 Overview of Available Functions

Currently, you can use a client program to:

» read datafrom OPUS spectrum files and 3D files; you can either read
the whole frequency region or select a part of interest from the data.

» write datato OPUS spectrum files and 3D files; you can either write
the whole frequency region or select a part of interest from the data.

* load and unload OPUSfiles.

« read fileinformation from the Client/Server file list.
» read OPUS parameters from an OPUSfile.

» save OPUS parametersto an OPUSfile.

 read data from report blocks.

e gtart OPUS macros.

» exchange parameters with an OPUS macro.

In addition, all functions of the command line, i.e. al OPUS processing func-
tions are supported, according to the syntax described earlier.

12.2 Commands and Command Syntax

In the following you find a list containing al Client/Server commands. The
description of all commandsis structured in the same manner:

Bruker Optik GmbH OPUS-NT Programming 12-1

The C/S-Interpreter and its Commands

Syntax:

The name of the command and the syntax that has to be applied. Mandatory
exchange parameters are indicated with ,,< >*, optional parameters are enclosed
in square brackets []“.

Description:

A description of the action performed by the command.
Return Value:

A list of the possible return values.

Return Value 2:

Return Value 3:

Some commands return additional text after confirming the execution with OK;
in this case they must be read.

Errors:
A list of possible error messages.
Comments:

Notes and further comments about the command.

12.3 Old C/S Commands

These commands have been available already in OPUS-OS/2.

12.3.1 Overview

The following commands are still used by OPUS-NT:

TIMEOUT sets the maximum wait time
CLOSE _PIPE closes pipe

OVERWRITE activates overwrite mode
PRESERVE deactivates overwrite mode
COUNT_ENTRIES counts entries of the file input list
READ_FROM_ENTRY sets the entry number and data block
WRITE_TO_ENTRY sets the entry number and data block for writing
READ_FROM_FILE selectsfile for reading
WRITE_TO_FILE selects file for writing
READ_FROM_BLOCK specifies the data block for reading
WRITE_TO_BLOCK specifies the data block for writing

122

OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands

ASCII sets data point mode to text
BINARY sets data point mode to binary
DATA_VALUES sets data point mode to frequencies
DATA_POINTS sets data point mode to data points
READ_HEADER reads spectrum header

READ _DATA reads spectral data
WRITE_HEADER writes spectrum header
WRITE_DATA writes spectral data
COPY_DATA copies spectrum block
LOAD_FILE loads afile

UNLOAD_FILE unloads afile

START_MACRO runs a macro

FILE_PARAMETERS Sets parameter mode to spectrum parameters
OPUS PARAMETERS sets parameter mode to OPUS parameters
READ_PARAMETER reads parameters

12.3.2 CLOSE_PIPE
Syntax:

“CLOSE_PIPE”

Description:

Closes the pipe connection.
Return Value:

“OK”

Comment:

Although it is not strictly required, this command should be send if no further
communication with OPUS is necessary. The corresponding program pipe will
be closed by OPUS and the resources returned.

12.3.3 COUNT_ENTRIES
Syntax:

“COUNT_ENTRIES’

Description:

Returns the number of data blocks that have been selected in the Select File dia-
log of the External Program function.

Return Value:

13 OKH

Bruker Optik GmbH OPUS-NT Programming 12-3

The C/S-Interpreter and its Commands

Return Value 2:
<Number of data blocks>
Comment:

This command ensures that al files or data blocks selected in the Select File
dialog of the External Program function can be accessed.

12.3.4 READ_FROM_ENTRY
Syntax:

“READ_FROM_ENTRY <Number>"
Description:

This command specifies the data block accessed by the READ _DATA com-
mand.

Return Value:

“OK” or error message.

Error:

“Syntax: READ_FROM_ENTRY <Number>"
“Entry number out of range”

Return Value 2:

<Complete path of the OPUS file>

<File number>

<Data block name>

Comment:

The argument to this command is the number of an entry in the Client/Server
filelist (between 1 and the number returned from the COUNT_ENTRIES com-
mand), from which the client program intends to read. If no error occurs, the
complete file name (including drive and path), as well as the data block name of
the selected file in text format will be returned as the second return value. The
format of the data block nameisidentical to the one used in the history function.

The file name returned by the command is hyphenated and followed by the
number of the copy (clonecount) for further use with the command line.

124

OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands

12.3.5 WRITE_TO_ENTRY
Syntax:

“WRITE_TO_ENTRY <Number>"
Description:

This command specifies the data block accessed by the WRITE_DATA com-
mand.

Return Value:

“OK” or error message.

Error:

“Syntax: WRITE_TO_ENTRY <Number>"
“Entry number out of range”

Return Value 2:

<Complete path of the OPUS file>

<File number>

<Data block name>

Comment:

The argument to this command is the number of an entry in the Client/Server
filelist (between 1 and the number returned from the COUNT_ENTRIES com-
mand). If no error occurs, the complete file name (including drive and path), as
well as the name of the data block in text format will be returned as the second
return value. The name of the data block is returned in the same format used in
the history function.

The file name returned by the command is hyphenated and followed by the
number of the copy (clonecount) for further use with the command line.

12.3.6 READ_FROM_FILE

Syntax:

“READ_FROM_FILE <Filename> or <File number>"
Description:

Specifies the OPUS file from which the client program intends to read. The

Bruker Optik GmbH OPUS-NT Programming 12-5

The C/S-Interpreter and its Commands

argument to this command is the file name which can be specified with or with-
out hyphens. Optionally, the clonecount can be stated. If the file was aready
loaded in OPUS using this name (including the correct clonecount), this copy
will be used. Otherwise, the file will automatically be loaded. For reasons of
compatibility to OPUS-OS/2 the file can till be accessed via an internal file
number, but this number is no longer limited to the region between 1 to 699.

Return Value:

“OK” or error message.

Error:

“Syntax: READ_FROM _FILE <File name> or <File number>"
“File not Found”

Return Value 2:

<Complete path of the OPUS file>

<File number>

Comment:

Specifies the OPUS file from which the client program intends to read. This
command is only able to select a file; the READ_FROM_BLOCK command
must subsequently be used to specify the data block in the file, from which to
read.

The error message , File not Found” can have multiple causes. In generd, it
indicates an error while accessing thefile.

The file name returned by the command is hyphenated for further use in the
command line and is followed by the number of the copy (clonecount).

12.3.7 WRITE_TO_FILE

Syntax:

“WRITE_TO_FILE <File name> or <File number>"
Description:

Specifies the OPUS file to which the client program intends to write. The argu-
ment to this command is the file name which can be specified with or without
hyphens. Optionally, the clonecount can be stated. If the file was aready
loaded in OPUS using this name (including the correct clonecount), this copy
will be used. Otherwise, the file will automatically be loaded. For reasons of

126

OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands

compatibility to OPUS-OS/2 the file can till be accessed via an internal file
number, but this number is no longer limited to the region between 1 to 699.

Return Value:

“OK” or error message.

Error:

“Syntax: WRITE_TO_FILE <File name> or <File number>"
“File not Found”

Return Value 2:

<Complete path of the OPUS file>

<File number>

Comment:

Specifies the OPUS file to which the client program intends to write. Thiscom-
mand isonly ableto select afile; the WRITE_TO_BLOCK command must sub-
sequently be used to specify the data block in the file to which to write.

The error message ,,File not Found® can have multiple causes. In generd, it
indicates an error while accessing thefile.

The file name returned by the command is hyphenated for further use in the
command line and is followed by the number of the copy (Clonecount).

12.3.8 READ_FROM_BLOCK
Syntax:

“READ_FROM_BLOCK <Block name>"
Description:

Specifies the data block from which the client program intends to read. The
command aways refers to the file that was last specified with the
READ_FROM_ENTRY or the READ_FROM_FILE command.

Return Value:
“OK” or error message.
Error:

“Syntax: READ_FROM_BLOCK <Block name>"

Bruker Optik GmbH OPUS-NT Programming 127

The C/S-Interpreter and its Commands

“No Filename or Filenumber defined”
“Unknown blocktype”

“Block not found”

Comment:

The argument to the command is the block type which isalso used in reportsi.e.
“AB” for an absorption spectrum, “TR/Multiple’ for a transmission block of a
3D file. The command will only be accepted if it was preceded by either the
READ_FROM_ENTRY or the READ_FROM _FILE command.

12.3.9 WRITE_TO_BLOCK
Syntax:

“WRITE_TO_BLOCK <Block name>"
Description:

Specifies the data block from which the client program intends to write. The
command aways refers to the file that was last specified with the
WRITE_TO_ENTRY or the WRITE_TO_FILE command.

Return Value:

“OK” or error message.

Error:

“Syntax: WRITE_TO_BLOCK <Block name>"
“No Filename or Filenumber defined”
“Unknown blocktype”

“Block not found”

Comment:

The argument to the command is the block type which is aso used in reports,
i.e. “AB” for an absorption spectrum, “TR/Multiple” for atransmission block
of a 3D file. The command will only be accepted if it was preceded by either
the WRITE_TO_ENTRY or the WRITE_TO_FILE command.

12-8

OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands

12.3.10 ASCII

Syntax:

“ASCII”

Description:

Sets the transfer mode used to transfer data points to ASCII.
Return Value:

“OK”

Comment:

If this mode is chosen (default mode) all data points will be transferred as
ASCII text. Each data point is followed by an End of Line sequence.

12.3.11 BINARY

Syntax:

“BINARY”

Description:

Sets the transfer mode used to transfer data points to BINARY .
Return Value:

“OK”

Comment:

If this mode is chosen, al data points will be transferred as 4 byte |IEEE float-
ing-point number (REAL*4 in FORTRAN, FLOAT in C). In this mode, the
data points will not be terminated. Therefore, the number of bytestransferred is
N*4, N being the total nhumber of transferred data points. This mode is faster
than the ASCII mode.

12.3.12 DATA_VALUES
Syntax:

“DATA_VALUES’
Description:

The parameters of the READ_HEADER, READ_DATA and COPY_DATA

Bruker Optik GmbH OPUS-NT Programming 12-9

The C/S-Interpreter and its Commands

will be interpreted as frequency values.
Return Value:

143 OK”

12.3.13 DATA_POINTS
Syntax:

“DATA_POINTS’
Description:

The parameters of the READ_HEADER, READ_DATA and COPY_DATA
will be interpreted as data points.

Return Value:
HOK”
Comment:

The data point numbering starts with ,,1”. Floating-point numbers are aways
rounded to the next lower integer (e.g. 14.965 will be rounded to 14).

12.3.14 READ_HEADER

Syntax:

“READ_HEADER [<X1>[-<X2>] [<Z1>[-<Z2>]]"
Description:

Reads the header of a spectrum block and returns the frequency range of the
spectrum. Several options are available.

Return Value:

“OK” or error message.

Error:

“No Filename or Filenumber defined”
“No Blocktype defined”

“Error Reading File”

“Not implemented”

12-10

OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands

Return Value 2:

In case of regular spectrum blocks:

<Number of data points (NX = XL - XF +) in region X>
<Frequency of the first data point in region X>
<Frequency of the last data point in region X>

Return Value 2:

In case of 3D spectrum blocks:

<Number of data points (NX = XL - XF + 1) in region X>
<Frequency/number of the first data point in region X>
<Frequency/number of the last data point in region X>
<Number of spectra(NZ = ZL - ZF + 1) inregion Z>
<Value (e.g. time) of the first spectrum in region Z>
<Value (e.g. time) of the last spectrum in region Z>
Note:

The output will always be returned as ASCII text, separated by an End of Line
sequence, regardless of the selected data transfer mode.

Comment:
Up to four parameters can be forwarded as command arguments.

<X1>, <X2> define the frequency region of the spectrum block. If <X2>isnot
explicitly stated, only one data point in the vicinity of <X 1> will bereturned. If
no parameters are specified or if <X1> was set to ,,* 7, all data stored in the
spectrum block will be returned.

<Z1>, <Z2> define theregion of the Z axisfor which datawill be returned (only
for 3D files). If <Z2> isnot specified, only datain the vicinity of <Z1> will be
returned. If no parameters are specified or if <Z1> was set to ,,*”, al data
stored in the spectrum block will be returned. In the case of regular spectrum
blocks, the parameters <Z1> and <Z2> will be ignored and do not cause an
error message in case they have been stated.

All four parameters can either be entered as integer or as floating-point number
and will be interpreted either as frequencies or as data points, depending on the
settings (seethe DATA_VALUES and DATA_POINTS commands).

Bruker Optik GmbH OPUS-NT Programming 12-11

The C/S-Interpreter and its Commands

12.3.15 READ_DATA

Syntax:

“READ_DATA [<X1>[<X2>]] [<Z1>[-Z2]]"
Description:

Reads the header and data points of a spectrum block within the limits indi-
cated. The parameters of the command are similar to the parameters of the
READ_HEADER command.

Return Value:

“OK” or error message.

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Error Reading File”

“Not implemented”

Return Value 2:

In case of regular spectrum blocks:

<Number of data points (NX = XL - XF +) in region X>
<Frequency of the first data point in region X>
<Frequency of the last data point in region X>

<Scaling factor for Y values>

<Y (XF)>, <Y (XF + 1)>, <Y(XF + 2)> ..<Y (XL)>

“OK” or “Error Reading File’

Return Value 2:

In case of 3D spectrum blocks:

<Number of data points (NX = XL - XF + 1) inregion X>
<Frequency/number of the first data point (XF) in region X>

<Frequency/number of the last data point (XL) in region X>

12-12 OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands

<Number of spectra(NZ = ZL - ZF + 1) inregion Z>
<Value (e.g. time) of the first spectrum in region Z>
<Value (e.g. time) of the last spectrum in region Z>
<Scaling factor for Y values> for Z = ZF

<Y (XF)>, <Y(XF + 1)>, ... <Y(XL)>for Z = ZF
<Scaling factor for Y values> for Z = ZF+1
<Y(XF)>, <Y(XF + 1)>, ...<Y(XL)>for Z=ZF + 1
<Scaling factor for Y values> for Z = ZF + 2

<Y (XF)>, <Y(XF + 1)>, ... <Y(XL)>for Z = ZF + 2

<Scaling factor for Y values> for Z = ZL
<Y(XF)>, <Y(XF + 1)>, ... <Y(XL)>for Z =ZL
“OK1” or “Error Reading File”

Comment:

The header values will always be returned as ASCI| text, separated by an End of
Line sequence, regardless of the selected data transfer mode. The data points
will be returned either as ASCII text, separated by an End of Line sequence, or
as floating-point numbers without any separator, depending on the selected data
transfer mode. Either ,,OK” or the error message “Error Reading File” will be
appended after the data points.

12.3.16 WRITE_HEADER
Syntax:

‘“WRITE_HEADER”

Description:

Writes a (new) header for a data block. After the command, the following
parameters must be send as ASCI| text:

Return Value:

In case of regular spectrum blocks:

Bruker Optik GmbH OPUS-NT Programming 12-13

The C/S-Interpreter and its Commands

<Number of data points (NX = XL - XF +) in region X>
<Frequency/number of the first data point in region X>
<Frequency/number of the last data point in region X>

In case of 3D spectrum blocks:

<Number of data points (NX = XL - XF + 1) in region X>
<Frequency/number of the first data point in region X>
<Frequency/number of the last data point in region X>
<Number of spectra(NZ = ZL - ZF + 1) inregion Z>
<Value (e.g. time) of the first spectrum in region Z>
<Value (e.g. time) of the last spectrum in region Z>
“OK” or error message.

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Not implemented”

Comment:

This command servesto edit existing data block headers. Especidly, pay atten-
tion to the number of data points (especialy in Z direction): the number of data
points specified must match the actual number of data points stored in the data
block. Otherwise, a shift of the data will resuilt.

12.3.17 WRITE_DATA
Syntax:

“WRITE_DATA”
Description:

Writes the header and data pointsinto a data block. After the command, the fol-
lowing parameters must be send:

In case of regular spectrum blocks:

<Number of data points (NX = XL - XF + 1) in region X>

12-14

OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands

<Frequency/number of the first data point (XF) in region X>
<Frequency/number of the last data point (XL) in region X>

<Scaling factor for Y-Vaues> <Y(XF)>, <Y(XF + 1)>, <Y(XF + 2)>
L<Y(XL)>

In case of 3D spectrum blocks:

<Number of data points (NX = XL - XF + 1) in region X>
<Frequency/number of the first data point (XF) in region X>
<Frequency/number of the last data point (XL) in region X>
<Number of spectra(NZ = ZL - ZF + 1) inregion Z>
<Value (e.g. time) of the first spectrum in region Z>
<Value (e.g. time) of the last spectrum in region Z>

<Scaling factor for Y values> for Z = ZF <Y (XF)>, <Y (XF + 1)>, <Y (XI,)> for
Z=7F

<Scaling factor for Y values> for Z=2ZF + 1
<Y(XF)>, <Y(XF+1)>, ...<Y(XL)>forZ=ZF +1
<Scaling factor for Y values> for Z = ZF + 2

<Y (XF)>, <Y(XF + 1)>, ... <Y(XL)>for Z = ZF + 2

<Scaling factor for Y values> for Z = ZL
<Y(XF)>, <Y(XF +1)>, ... <Y(XL)>forZ=ZL
Return Value:

“OK” or error message.

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Not implemented”

“Error Accessing Data’

Bruker Optik GmbH OPUS-NT Programming 12-15

The C/S-Interpreter and its Commands

Return Value 2:

After the header and all data points have been read by OPUS, either “OK” or an
error message will be returned.

Comment:

The header values must always be sent as ASCII text, separated by an End of
Line sequence, regardless of the selected data transfer mode. The data points
must be returned either as ASCI| text, separated by an End of Line sequence, or
as floating-point numbers without any separator, depending on the selected data
transfer mode.

12.3.18 COPY_DATA

Syntax:

“COPY_DATA [<X1>[-<X2>]] [<Z1>[-<Z2>]]”
Description:

Copies data points from a data block specified by one of the commands
READ_FROM_ENTRY or READ_FROM _FILE and READ_FROM_BLOCK
to a data block specified by either the WRITE TO ENTRY or
WRITE_TO_FILE and WRITE_TO_BLOCK command (for parameters see
READ_HEADER).

Return Value:

After receiving the command:
“OK” or error message.
Return Value 2:

After processing the command:
“OK” or error message.

Error:

“No Filename or Filenumber defined”
“No Blocktype defined”

“Not implemented”

“Error Reading File”

Comment:

12-16

OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands

The copy process take place within OPUS. Therefore, no data points are trans-
ferred viaa pipe.

12.3.19 LOAD_FILE
Syntax:

“LOAD_FILE <File name>"
Description:

Loads the indicated file into OPUS.
Return Value:

“OK” or error message.

Error:

“Syntax: LOAD_FILE <File name>”
“Error reading file’

Return Value 2:

<Path and name of the file>

<File number>

Comment:

OPUS loads the file even if it has aready been loaded before. In this case
another copy (clone) is generated.

The file name returned by the command is hyphenated for further use in the
command line and is followed by the number of the copy (Clonecount).

12.3.20 UNLOAD_FILE

Syntax:

“UNLOAD_FILE <File name> or <File number>"
Description:

Unloads afile from OPUS selection line. The argument to this command is the
file name (including clonecount).

Return Value:

Bruker Optik GmbH OPUS-NT Programming 12-17

The C/S-Interpreter and its Commands

“OK” or error message.

Error:

“Syntax: UNLOAD_FILE <File name> or <File number>"
“File not loaded”

Return Value 2:

<Path and name of the file>

<File number>

Comment:

OPUS unloadsthe selected file. The complete path and file name, aswell asthe
entry number will be returned. If the path of the file is not specified, OPUS
searches the “Data Path” directory for thefile.

For reasons of compatibility to OPUS-OS/2 the file can still be accessed via an
internal file number, but this number is no longer limited to the region between
1 to 699.

The file name returned by the command is hyphenated for further use in the
command line and is followed by the number of the copy (clonecount).

12.3.21 START_MACRO

Syntax:

“START_MACRO <Macro file name>[<Number of input parameters>]”
Description:

Starts an OPUS macro. Input parameters can be forwarded to the macro. If
parameters are exchanged, the total number of parameters must be defined as
the second parameter. If this number is omitted, then it will be set to O; in this
case, no parameters are read. 1f the number of input parametersislarger than 0O,
the input parameters <input parameter 1>, <input parameter 2>,, <input
parameter N> have to be sent by the client program. In addition, the macro can
return parameter values to the client program.

Return Value:

Immediately after the command execution (i.e. directly after the starting the
macro):

“OK” or error message.

12-18

OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands

Return Value 2:

After macro execution:

“OK” or error message.

Return Value 3:

only if the macro returned parameters:
<Number of return value parameters>
<Return value parameter 1>

< Return value parameter 2>

<Return value parameter N>

Return Value 4.

only if the macro returned parameters:

“OK” or error message.

Error:

“Syntax: START_MACRO <Macro File> <#Parameter>"
“Error in Opus Command Line Execution - ID: %d”
Comment regar ding the command:

When executing the command the following order has to be maintained:

* Send command including the macro name and the number of input
parameters (optional).

* Read return value: “OK” or error message.

* Send input parameter.

* Read return value: “OK” or error message.

* Read return value parameter.

The individual input parameters must be separated by End of Line sequences.

Macro parameters can also directly follow a command; in this case the second
“OK” or error message will not be send.

Bruker Optik GmbH OPUS-NT Programming 12-19

The C/S-Interpreter and its Commands

Comment regar ding the macr os:

A structure similar to sub macro calls is used to control client programs. Input
parameters will be transferred from the client program to the macro using adia-
log box, that must be located in the first line of the respective macro. Return
values are returned via another dialog box located in the last line of the macro.
As in the case of a sub macro call, both dialog boxes will not be displayed. If
OPUS cannot find adialog box in the first macro line, the macro will be started
without exchanging parameters, even if they have been sent to OPUS.

In thefirst dialog box, the input parameters will be assigned from top to bottom;
only variables of type FILE, TEXT FOR EDIT, NUMERIC, TEXT FOR OUT-
PUT or CHECK BOX are allowed. Empty lines and variables of type BUT-
TON and COMBOBOX will be ignored. If the number of input paramteres
exchanged is not equal to the number of variables in the dialog box, OPUS ter-
minates the assignment either after all input parameters have been read or if all
macro variables have been assigned. ASCII input paramters will automatically
be converted into the format of the macro variable. Accordingly, the return val-
ues will be transformed by the last dialog box in the macro from top to bottom
into ASCII text, and, delimited by an End of Line character, returned to the cli-
ent program. Here also, empty lines and variables of type BUTTON and COM-
BOBOX will be ignored. If no dialog box can be found in the last line of the
macro (or if the dialog box is empty), OPUS returns “0” as number of return
value parametersimmediately after starting the macro. Communication will be
resumed without waiting for the macro to terminate.

12.3.22 FILE_PARAMETERS
Syntax:

“FILE_PARAMETERS’

Description:

After this command, the READ_PARAMETER command reads a parameter
from the data block of a file specified by the commands
READ_FROM_ENTRY, READ_FROM_FILE or READ_FROM_BLOCK.

Return Value:
HOKH
Comment:

Thisisthe default setting for the READ_PARAMETER command.

1220

OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands

12.3.23 OPUS_PARAMETERS
Syntax:

“OPUS_PARAMETERS’

Description:

After this command, READ_PARAMETER reads a parameter from the OPUS
default parameter set.

Return Value:

“ OKH

12.3.24 READ_PARAMETER
Syntax:

“READ_PARAMETER <Parameter name>"
Description:

Reads a parameter either from a specified data block of an OPUS file or from
the standard OPUS parameter set.

Return Value:

“OK” or error message.

Error:

“Syntax: READ_PARAMETER <parameter name>"
“No Filename or Filenumber defined”
“No Blocktype defined”

“Parameter not found”

“Invalid Parameter Name”

Return Value 2:

<Parameter value>

Comment:

The parameter name forwarded as argument to the command consists of athree-
character abbreviation (see chapter 11). After the confirmation by OPUS, the
parameter value will be transferred as ASCI| text.

Bruker Optik GmbH OPUS-NT Programming 12-21

The C/S-Interpreter and its Commands

12.3.25 WRITE_PARAMETER

Syntax:

“WRITE_PARAMETER <Parameter name> <Parameter value>"
Description:

The WRITE_PARAMETER command writes a parameter or changes an exist-
ing one in the OPUS file specified by either READ_FROM_ENTRY or
READ _FROM_FILE and READ_FROM_BLOCK.

Return Value:

“OK” or error message.

Error:

“Syntax: WRITE_PARAMETER <Parameter name> <Parameter value>"
“No Filename or Filenumber defined”

“No Blocktype defined”

“Parameter not found”

“Invalid Parameter Name”

Comment:

The parameter name forwarded as argument to the command consists of athree-
character abbreviation.

The parameter value will be forwarded as ASCI|I text file, i.e. numerical values
have to be converted to ASCII strings.

12.3.26 RUN_MACRO
Syntax:

Equivalent to START_MACRO
Description:

The RUN_MACRO command starts a macro. Contrary to START _MACRO,
the control is returned immediately after the macro was started. The
RUN_MACRO command does not wait for the macro to terminate and also
doesn’t return any results.

12-22

OPUS-NT Programming Bruker Optik GmbH

Old C/S Commands

Return Value:

After the command:

“OK” or error message.

Return Value 2:

After transferring the input parameter:
“OK” or error message.

Return Value 3:

<Macrol D>: a macro identification number unique for each macro session.
Error:

Similar to START_MACRO
Comment:

See also START_MACRO.

To access the results of the macro started, the MACRO_RESULTS commands
isused.

The returned <MacrolD> is used as parameter for the MACRO_RESULTS and
the KILL_MACRO commands.

12.3.27 MACRO_RESULTS
Syntax:

“MACRO_RESULTS <MacrolD>"
Description:

The MACRO_RESULTS command retrieves the result parameters of a macro
session that was started with the ID <Macrol D>, using the RUN_MACRO com-
mand.

Return Value:
“OK” or error message.
Return Value 2;

O or 1toindicate whether the macro has aready finished or is still running.

Bruker Optik GmbH OPUS-NT Programming 12-23

The C/S-Interpreter and its Commands

Return Value 3:

Containing the results, if the macro was terminated. For a format description
see START_MACRO.

Error:

“Syntax: MACRO_RESULTS <Macrol D>
“Invalid Macro ID”

Comment:

In combination with the RUN_MACRO command, this command allows client
programs to run different tasks while the macro is still running. Use this com-
mand to frequently check, whether the macro has finished and to obtain the
return parameters.

12.3.28 KILL_MACRO
Syntax:

“KILL_MACRO <Macrol D>"
Description:

KILL_MACRO terminates a macro session started by RUN_MA CRO with the
specified macro ID.

Return Value:

“OK” or error message.

Error:

“Syntax: KILL_MACRO <Macrol D>"
“Invalid Macro ID”

Comment:

In combination with the RUN_MACRO command this command allows client
programs to run different tasks while the macro is still running. Under certain
conditions a client program can use this command to stop a macro that is till
running. This corresponds to the Abort Task command of the OPUS task bar.

1224

OPUS-NT Programming Bruker Optik GmbH

Obsolete Commands

12.4 Obsolete Commands

The following commands are only supported out of compatibility reasons to
OPUS-0OS/2. Due to the different concept of OPUS-NT, they are no longer of
any practical importance.

1241 OVERWRITE

Syntax:

“OVERWRITE"

Description:

Allows the subsequent commands to overwrite files and data blocks.
Return Value:

“OK”

Comment:

Subsequent to this command, the following commands are allowed to overwrite
files and data blocks:

WRITE_TO_ENTRY
WRITE_TO FILE

WRITE_TO_BLOCK

12.4.2 PRESERVE

Syntax:

“PRESERVE”

Description:

Prevents files and data blocks from being replaced.
Return Value:

“OK” or error message.

Error:

“Set OVERWRITE mode to replace blocks”

Bruker Optik GmbH OPUS-NT Programming 12-25

The C/S-Interpreter and its Commands

Example:

Comment:

Subsequent to this command, the following commands cannot replace existing
files and data blocks:

WRITE_TO_ENTRY
WRITE_TO FILE
WRITE_TO BLOCK

If an existing data block was specified in a WRITE_TO_BLOCK command,
OPUS returned the message “ Set OV ERWRITE mode to replace blocks’.

In case of a WRITE_TO_ENTRY or WRITE_TO_FILE command, the file
name extension was incremented until the first non-existing file was obtained.

Assume the files TEST.2 and TEST.3 aready exist in the current OPUS\DATA
directory. The“WRITE_TO_FILE TEST.1” command is sent twice. The first
time the command is executed and generates the file TEST.1. The second time,
the file name extension is incremented until the first non-existing file name is
obtained (TEST.1), because it is not allowed to replace the now existing file
TEST.1.

12.4.3 TIMEOUT
Syntax:

“TIMEOUT <Delay>"
Description:

Sets a delay time (in seconds) for the pipe, which may not be replaced during
read and write processes.

Return Value:

“OK” or error message.

Error:

“Invalid time limit”

“Syntax: TIMEOUT<Seconds>"
Comment:

The delay is an integer between | and 1000. Without this command the default

1226

OPUS-NT Programming Bruker Optik GmbH

New Commands

value of 10 seconds will be used.

12.5 New Commands

The first view commands of this section serve to further specify the binary
transfer mode. They mainly concern the data exchange with scripts. Because
scripts allow no direct memory access, the data must be enclosed in a variable
field to alow binary data exchange. Hence, the single elements are assigned a
certain typee BYTE_MODE, INT_MODE, FLOAT_MODE, and
DOUBLE_MODE alow to define, whether the binary OPUS data will be con-
tainedinaBYTE, INTEGER, FLOAT, or DOUBLE field in a script.

In case of a pipe, the respective memory region can be transferred directly,
which then will be interpreted on the receiving side.

No binary return values are allowed when using DDE connections; these are
availablein the HEXSTRING_MODE.

125.1 BYTE_MODE

Syntax:

“BYTE_MODFE”

Description:

Sets the binary transfer mode to single bytes.
Return Value:

143 OK”

12.5.2 INT_MODE

Syntax:

“INT_MODFE”

Description:

Sets the binary transfer mode to integer.
Return Value:

13 OKH

Bruker Optik GmbH OPUS-NT Programming 12-27

The C/S-Interpreter and its Commands

12.5.3 FLOAT_MODE

Syntax:

“FLOAT_MODFE”

Description:

Sets the binary transfer mode to floating-point numbers.
Return Value:

143 OK”

12.5.4 DOUBLE_MODE

Syntax:

“DOUBLE_MODE”"

Description:

Sets the binary transfer mode to double-precision.
Return Value:

13 OKH

12.5.5 HEXSTRING_MODE

Syntax:

“HEXSTRING_MODFE”

Description:

Sets the binary transfer mode to text.

Return Value:

“OK” or error message.

Comment:

DDE connection default settings for binary mode.

The datais converted to individual strings of humbers, depending on the mode
chosen (BYTE_MODE, INT_MODE, FLOAT_MODE and DOUBLE_MODE)
and will be transmitted as text.

12-28 OPUS-NT Programming Bruker Optik GmbH

New Commands

12.5.6 FLOATCONV_MODE
Syntax:

“FLOATCONV_MODE ON|OFF”
Description:

Switches the conversion of floating-point numbers on and off, when using
binary transfer mode.

Return Value:
“OK” or “ON|OFF”
Comment:

When using a pipe for binary data transfer under OS/2, a scaling factor was
transferred prior to the actual data. This factor was aso transferred binary, but
compared to the data transfer at double-precision (8 instead of 4 bytes). In
OPUS-NT, thisfactor isfound in the first element of the returned field.

If FLOATCONV_MODE is not selected for the binary data transfer to a script,
the first 8 bytes of data (the double-precision scaling factor) will be misinter-
preted as two single-precision floating-point numbers.

If neither , ON* nor ,,OFF* isforwarded as parameter the return value text pro-
vides the current settings.

12.5.7 GET_DISPLAY

Syntax:

“GET_DISPLAY”

Description:

Provides an identification number of the currently active display window.
Return Value:

“OK”

Return Value 2:

<WindowID>

Comment:

The number returned can be used as parameter for the SET_WINDOW,

Bruker Optik GmbH OPUS-NT Programming 12-29

The C/S-Interpreter and its Commands

CLOSE_WINDOW, and POSITION_WINDOW commands.

12.5.8 SET_WINDOW
Syntax:

“SET_WINDOW <WindowID>"
Description:

The window specified by the identification number will be promoted to be the
active display window for the current C/S session.

Return Value:

“OK” or error message.

Error:

“Syntax: SET_WINDOW <Window>"
Comment:

If new files are loaded or generated by another OPUS function, they will be dis-
played in the currently active window. The function is used to define this win-
dow.

12.5.9 NEW_WINDOW

Syntax:

“NEW_WINDOW <Window type>"
Description:

Creates a new window of the type specified.
Return Value:

“OK” or error message.

Error:

“Syntax: NEW_WINDOW <Window type>"
“Error creating View”

Comment:

The window type defines, that for example a new report window will be gener-

12-30

OPUS-NT Programming Bruker Optik GmbH

New Commands

ated.

12.5.10 CLOSE_WINDOW

Syntax:

“CLOSE_WINDOW <WindowID>"

Description:

Closes the window specified by the <WindowID>.
Return Value:

“OK” or error message.

Error:

“Syntax: CLOSE_WINDOW <Window>"
Comment:

The parameter <WindowlID> necessary to address the display window can
result from either NEW_WINDOW or from GET_DISPLAY .

12.5.11 POSITION_WINDOW

Syntax:

“POSITION_WINDOW <WindowID> <x> <y> <cx> <cy>"
Description:

Positions the display window specified by <WindowID> at the coordinates
<x>, <y> and re-sSizesit to <cx>, <cy>.

Return Value:

“OK” or error message.

Error:

“Syntax: POSITION_WINDOW <Window> <x> <y> <cx> <cy>\n"
Comment:

The parameter <WindowID>, necessary to address the display window, can
result from either NEW_WINDOW or from GET_DISPLAY .

Bruker Optik GmbH OPUS-NT Programming 12-31

The C/S-Interpreter and its Commands

12.5.12 GET_LANGUAGE
Syntax:

“GET_LANGUAGE’

Description:

Retrieves the current language settings of OPUS-NT. The language is set using
the command line argument /LANGUAGE when starting OPUS.

Return Value:
“OK”

Return Value 2:
<L anguage>
Comment:

The name of the language will be returned as text.

12.5.13 GET_OPUSPATH

Syntax:

“GET_OPUSPATH”

Description:

Retrieves the path of the currently running OPUS program.
Return Value:

“OK”

Return Value 2:

<Path>

Comment:

The path can be checked in the User Settings dialog box of the Setup OPUS
pull-down menu.

12-32

OPUS-NT Programming Bruker Optik GmbH

New Commands

12.5.14 GET_BASEPATH

Syntax:

“GET_BASEPATH”

Description:

Retrieves the default path of the currently logged in user.
Return Value:

“OK”

Return Value 2:

<Path>

Comment:

The path is set in the User Settings dialog box of the Setup OPUS pull-down
menul.

12.5.15 GET_DATAPATH

Syntax:

“GET_DATAPATH”

Description:

Retrieves the data path of the currently logged in user.
Return Value:

“OK”

Return Value 2:

<Path>

Comment:

The path is set in the User Settings dialog box of the Setup OPUS pull-down
menul.

12.5.16 GET_WORKPATH
Syntax:

“GET_WORKPATH”

Bruker Optik GmbH OPUS-NT Programming 12-33

The C/S-Interpreter and its Commands

Description:

Retrieves the path for work files of the currently logged in user.
Return Value:

“OK”

Return Value 2:

<Path>

Comment:

The path is set in the User Settings dialog box of the Setup OPUS pull-down
menul.

12.5.17 GET_USERNAME

Syntax:

“GET_USERNAME”

Description:

Retrieves the name of the currently logged in user.
Return Value:

“OK”

Return Value 2:

<Name>

Comment:

The user account is set in the User Settings dialog box of the Setup OPUS pull-
down menu.

12.5.18 GET_BENCH
Syntax:

“GET_BENCH”
Description:

Retrieves the configuration file of the currently selected spectrometer.

12-34

OPUS-NT Programming Bruker Optik GmbH

New Commands

Return Value:
“OK"
Return Value 2:

<OpticsFile>

12.5.19 UPDATE_BENCH
Syntax:

“UPDATE_BENCH <OpticsFile>"
Description:

Triggers OPUS to initialize the optics configuration using the settings stored in
the <OpticsFile>.

Return Value:

“OK” or error message.

Error:

“Syntax: UPDATE_BENCH <inifile>"

“RebuildParmText error”

12.5.20 COMMAND_SAY

Syntax:

“COMMAND_SAY <Text>"

Description:

Returns the transferred commands in text format.
Return Value:

<Text>

Comment:

This command serves to test the communication between OPUS and the client
program. It can also be used to forward parameters to scripts. To do this, call
the OpusCommand function of aform created with the OpenForm command (or
selected with FormByName), and forward parametersusing COMMAND_SAY
<Parameter>. The form receives the parameter with OnOpusResult <Parame-
ter>.

Bruker Optik GmbH OPUS-NT Programming 12-35

The C/S-Interpreter and its Commands

12.5.21 REPORT_INFO
Syntax:

“REPORT_INFO”

Description:

Retrieves information about the number of main and sub reports of an OPUS
report block.

Return Value:

“OK” or error message.
Return Value 2:
<#Main reports>

<#Sub reports 1>

<#Sub reports N>

Error:

“No Filename or Filenumber defined”
“No Blocktype defined”

“Error Reading Report”

Comment:

Firgt, the total number of main reports is returned, followed by the number of
sub reports contained in each main report. Each line holds only one number.

The information is obtained from the OPUS report block selected by the
READ_FROM_FILE, READ_FROM_ENTRY and READ FROM_BLOCK
commands.

12.5.22 HEADER_INFO

Syntax:

“HEADER_INFO <Main report> <Sub report>"
Description:

Returns the number of linesin an OPUS report block header.

12-36 OPUS-NT Programming Bruker Optik GmbH

New Commands

Return Value:

“OK” or error message.

Return Value 2:

<Lines>

Error:

“No Filename or Filenumber defined”
“No Blocktype defined”

“Error Reading Report”

Comment:

If no sub report is specified, the number of linesin the header of the main report
block is returned instead. If aso no main report is specified, the first main
report will be taken.

The information is obtained form the OPUS report block selected by the
READ_FROM_FILE, READ_FROM_ENTRY and READ FROM_BLOCK
commands.

12.5.23 MATRIX_INFO

Syntax:

“MATRIX_INFO <Main report> <Sub report>"
Description:

Returns the dimension (number of rows and columns) of a matrix stored in an
OPUS report block.

Return Value:

“OK” or error message.
Return Value 2:
<Rows>

<Columns>

Error:

“No Filename or Filenumber defined”

Bruker Optik GmbH OPUS-NT Programming 12-37

The C/S-Interpreter and its Commands

“No Blocktype defined”
“Error Reading Report”
Comment:

If no sub report is specified, the number of rowsin the main reports header will
be returned. If also no main report is specified, the first main report will be
taken.

The information is obtained form the OPUS report block selected by the
READ_FROM _FILE, READ_FROM_ENTRY, and READ_FROM_BLOCK
commands.

12.5.24 MATRIX_ELEMENT

Syntax:

“MATRIX_ELEMENT <Main report> <Sub report> <Row> <Column>"
Description:

Reads an element from a data matrix of an OPUS report block. The index of the
main/sub report as well as the index of the row and column has to be indicated.

Return Value:

“OK” or error message.
Return Value 2:
<MatrixElement>
Error:

“Syntax: MATRIX_ELEMENT <MainReport> <SubReport> <Row> <Col-
umn>"

“No Filename or Filenumber defined”

“No Blocktype defined”

“Error Reading Report”

Comment:

If the main report should be accessed, the sub report number must be set to “0”.

Determine the total number of rows and columns, using the MATRIX_INFO
command.

12-38

OPUS-NT Programming Bruker Optik GmbH

New Commands

All values are converted to text format prior to the transfer, regardless of the
data format of the element.

The information is obtained form the OPUS report block selected by the
READ_FROM_FILE/READ_FROM_ENTRY, and READ FROM_BLOCK
commands.

12.5.25 HEADER_ELEMENT

Syntax:

“HEADER_ELEMENT <Main report> <Sub report> <Row>"
Description:

Reads an element from the OPUS report block header. The index of the main/
sub report as well as the number of the row hasto be indicated.

Return Value:

“OK” or error message.

Return Value 2:

<ElementName>

<ElementContent>

Error:

“Syntax: HEADER_ELEMENT <MainReport> <SubReport> <Row>"
“No Filename or Filenumber defined”
“No Blocktype defined”

“Error Reading Report”

Comment:

The name of the feature in the selected header row and its value will be
returned. If the main report should be accessed, the sub report number must be
setto“0”.

Determine the total number of rows and columns using the HEADER_INFO
command.

All values are converted to text format prior to the transfer, regardless of the
data format of the element.

Bruker Optik GmbH OPUS-NT Programming 12-39

The C/S-Interpreter and its Commands

The information is obtained form the OPUS report block selected by the
READ_FROM_FILE/READ_FROM_ENTRY and READ _FROM_BLOCK
commands.

12.5.26 COMMAND_MODE
Syntax:

“COMMAND_MODE”
Description:

Sets the mode for processing a command line to COMMAND_MODE. This
mode runs commands and programs in the background and returns a message
after termination of the program.

Return Value:
“OKH
Comment:

Usually, this mode doesn’'t need to be explicitly set, since these modi are pre-
defined for the different transfer types and interfaces or alternatively are set by
different calls (like OpusExecute).

12.5.27 EXECUTE_MODE
Syntax:

“EXECUTE_MODFE’

Description:

Sets the mode for processing a command line to EXECUTE_MODE. This
mode runs commands and programs in the background, but does not wait for the
programs to terminate. No message will be returned when a program has fin-
ished.

Return Value:
“OKH
Comment:

Usually, this mode doesn’'t need to be explicitly set, since these modi are pre-
defined for the different transfer types and interfaces or alternatively are set by
different calls (like OpusExecute).

1240

OPUS-NT Programming Bruker Optik GmbH

New Commands

12.5.28 REQUEST_MODE
Syntax:

“REQUEST_MODE"

Description:

Sets the mode for processing a command line to REQUEST_MODE. This
mode does not run commands and programs in the background, but waits for the
programs to terminate. The result will be returned as soon as the program ter-
minates.

Return Value:
“OKH
Comment:

Usually, this mode doesn’'t need to be explicitly set, since these modi are pre-
defined for the different transfer types and interfaces or alternatively are set by
different calls (like OpusExecute).

12.5.29 CLOSE_OPUS
Syntax:

“CLOSE_OPUS’

Description:

Terminates OPUS.

Return Value:

No return values.

Comment:

This operation is similar to closing the OPUS user interface window.

12.5.30 TAKE_REFERENCE
Syntax:

“TAKE_REFERENCE <Experiment file>"
Description:

Performs a reference measurement using the specified <Experiment file>.

Bruker Optik GmbH OPUS-NT Programming 12-41

The C/S-Interpreter and its Commands

Return Value:
“OK” or error message.
Error:

“Error in Opus Command Line Execution - ID: %d”

12.5.31 MEASURE_SAMPLE
Syntax:

“MEASURE_SAMPLE <Experiment file>"
Description:

Performs a sample measurement using the specified <Experiment file> and
returns the acquired spectral data as text.

Return Value:

“OK” or error message.
Return Value 2:

Result File:<File number>
<File name>

Block: <Block type>
<UnitsX>

<uUnitsY >

Points: <Number of points>

<x1> <y1>

<Xn> <yn>

Error:

“Error in Opus Command Line Execution - ID: %d”
Comment:

All blocks of the new file (specified by the experiment file) are transmitted in
succession as data point tables.

12-42 OPUS-NT Programming Bruker Optik GmbH

New Commands

12.5.32 COMMAND_LINE

Syntax:

“COMMAND_LINE <Command line>"
Description:

Calls an OPUS function as command lines.
Return Value:

“OK” or error message.

Return Value 2:

Only in combination with COMMAND_MODE
<ThreadI D>

Error:

“Error in Opus Command Line Execution - ID: %d”
Comment:

In this exception, the keyword COMMAND_LINE can be omitted, because
OPUS triesto interpret all unknown C/S commands in command line notation.

The actual type of command processing depends on the call of the command (in
case of scripts for example OpusExecute), or the settings made by
COMMAND_MODE, EXECUTE_MODE, and REQUEST_MODE.

If COMMAND_MODE was selected, an identification number is supplied for
the background calculation, which can be used to abort the function in case of
STOP_THREAD.

12.5.33 STOP_THREAD
Syntax:

“STOP_THREAD <ThreadID>"
Description:

Terminates a OPUS processing function which was started by the
COMMAND_LINE function while COMMAND_MODE was selected.

Bruker Optik GmbH OPUS-NT Programming 12-43

The C/S-Interpreter and its Commands

Return Value:

“OK" or error message.

Error:

“Syntax: STOP_THREAD <Threadl D>"
Comment:

In COMMAND_MODE, COMMAND_LINE starts the function in the back-
ground and returns an identification number. This number can be used to abort
the function. Thisissimilar to the Abort Task command of the task manager.

Note: Aborting a program may result in data loss and produce corrupt OPUS
files. Therefore, it should only be used in emergencies.

12.5.34 ACTIVATE_DIALOG

Syntax:

“ACTIVATE_DIALOG <Command line>"
Description:

Starts the dialog box of an OPUS function.
Return Value:

“OK” or error message.

Error:

“Syntax: ACTIVATE_DIALOG CommandLine()”
Comment:

Opening an OPUS function dialog box within another program usualy is not
very practical, since the program cannot control the dialog box once it has been
opened. A command lineisrequired as a parameter similar to direct command
processing.

12.5.35 LOAD_EXPERIMENT
Syntax:

“LOAD_EXPERIMENT <Experiment file>"

1244

OPUS-NT Programming Bruker Optik GmbH

New Commands

Description:

Loads an experiment file in OPUS and sets the parameters for subsequent data
acquisitions.

Return Value:

“OK” or error message.

Error:

“Syntax: LOAD_EXPERIMENT <parameter file>"
“Unable to load Experiment file”

Comment:

This command is similar to the respective function of the OPUS Measurement
dialog box.

12.5.36 GET_USERRIGHTS

Syntax:

“GET_USERRIGHTS’

Description:

Retrieves the rights of the current user.

Return Value:

“OK”

Return Value2:

A list of user rights separated by semicolons or “No Rights’
Comment:

Allowsto adjust programs/scripts to perform different actions, depending on the
user rights.

12.5.37 PACKET_AVAILABLE
Syntax:

“PACKET_AVAILABLE <Packet name>"

Bruker Optik GmbH OPUS-NT Programming 12-45

The C/S-Interpreter and its Commands

Description:

Testsif certain OPUS software packages are installed on a computer.
Return Value:

“Yes’, “No” or error message.

Error:

“Syntax: PACKET_AVAILABLE <Packet name>"

Comment:

Allows a script or program to determine, whether a software package or an
OPUSfunctionisavailable at all. Thisappliesto QUANT, SEARCH, 3D etc..

12.5.38 GET_CLIENTAREA
Syntax:

“GET_CLIENTAREA”

Description:

Retrieves the available window size of the OPUS main window. Thisis depen-
dent on the chosen screen resolution. The result can be used for the positioning
of script forms and spectrum windows etc.

Return Value:
“OK”

Return Value2:
<width> <height>
Comment:

The returned values can be used as parameters for POSITION_WINDOW.

12.5.39 ACTIVATE_DISPLAY
Syntax:

“ACTIVATE_DISPLAY” <WindowID>
Description:

A spectrum window can be activated using this command. It will then be dis-

1246

OPUS-NT Programming Bruker Optik GmbH

New Commands

played in the front. The window specified by the ID number will then be the
active window for displaying the spectra.

Return Value:

“OK” or error message

Error:

“Syntax: ACTIVATE_DISPLAY <window>
Comment:

If new files are loaded or created by other OPUS functions, they will then be
displayed in the currently active window. The active window can be determined
with this function. Whereas SET_WINDOW is only valid for files used in
script, here the active window e.g. for manual loading can be set.

12.5.40 GET_LIMITS
Syntax:

“GET_LIMITS <WindowID>"
Description:

Liststhe actual display limits of the window.
Return Value:

“OK” or error message

Return Value 2:

<X1><Y1> <X2><Y2>

Error:

“Syntax: GET_LIMITS <window>"
Comment:

The <WindowID> can either be a result of NEW_WINDOW or
GET_DISPLAY

12.5.41 SET _LIMITS
Syntax:

“SET_LIMITS <WindowlID> <X-start> <X-end> <Y -start> <Y -end>"

Bruker Optik GmbH OPUS-NT Programming 12-47

The C/S-Interpreter and its Commands

Description:

Sets the display limits of the window to the given values. this is useful to e.g.
enlarge certain areas of the spectrum automatically. The four values determine
the coordinates for the new display limits.

Return Value:

“OK” or error message

Error:

“Syntax: SET_LIMITS <window> <xsp> <xep> <ymn> <ymx>"
Comment:

The <WindowID> can either be a result of NEW_WINDOW or
GET_DISPLAY

12.5.42 DISPLAY_BLOCK

Syntax:

“DISPLAY_BLOCK <WindowID> <color>"
Description:

Displays a datablock of an OPUS file selected by the commands
READ_FROM_ENTRY, READ_FROM _FILE or READ_FROM_BLOCK in
adisplay window determined by <windowlD>. <color> determines the color of
the curve as RGB value.

Return Value:

“OK” or error message

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Syntax: DISPLAY_BLOCK <window> <color>"
Comment:

The <WindowID> can either be a result of NEW_ WINDOW or
GET_DISPLAY

12-48

OPUS-NT Programming Bruker Optik GmbH

New Commands

12.5.43 UNDISPLAY_BLOCK
Syntax:

“UNDISPLAY_BLOCK <WindowID>"
Description:

Removes a datablock of an OPUS file specified by READ_FROM_ENTRY,
READ_FROM_FILE or READ_FROM_BLOCK from the window identified
by <WindowlID>.

Return Value:

“OK” or error message

Error:

“No Filename or Filenumber defined”

“No Blocktype defined”

“Syntax: UNDISPLAY _BLOCK <window>"
Comment:

The <WindowID> can either be a result of NEW_ WINDOW or
GET_DISPLAY

12.5.44 ENUM_STRINGS
Syntax:

“ENUM_STRINGS <parametername>
Description:

Possible values for a parameter of type ENUM can be requested at the given
conditions, e.g. depending on the spectrometer.

Return Value:

“OK” or error message

Return Value 2:

<number of the following valid strings>

<first parameterstring>

Bruker Optik GmbH OPUS-NT Programming 12-49

The C/S-Interpreter and its Commands

<last parameterstring>

Error:

“Syntax: ENUM_STRINGS <parameter name>"
“Invalid Parameter Name”

“No Enum Strings’

Comment:

The parameter name transferred as an argumentis athree letter abbrevation of a
parameter.

12.5.45 GET_VERSION
Syntax:

“GET_VERSION>"
Description:

Returns the version of the currently running OPUS NT program.
Return Value:

“OK”

Return Value 2:

<Version>

Error:

Comment:

Enables the reaction on and the controlling of, different current OPUS versions
from one program.

12.5.46 ASK_THREAD

Syntax:

“ASK_THREAD <Processl D> <specia command>
Description:

Enables the interprocess communication of an external program with arunning
Opus function.

12-50

OPUS-NT Programming Bruker Optik GmbH

New Commands

Return Value:

“OK” or error message

Return Value 2:

depending on the transferred command
Error:

“ASK_THREAD failed”

“Invalid Thread ID”

Comment:

This direct communication with currently running OPUS functions is intended
only for very special applications. It is mentioned here only for the sake of com-
pleteness. However it is actually reserved to internal programming and is used
for the coupling with other instruments. One receives the ProcessID either when
starting the function in the COMMAND_MODE or through
FIND_FUNCTION

12.5.47 FIND_FUNCTION
Syntax:

“FIND_FUNCTION <function name>"
Description:

Determines whether a certain OPUS function is executed in the background.
The returned 1D can be used to stop the function or to communicate with it (if
supported).

Return Value:

“OK” or error message

Return Value 2:

<Processl D> for identification

Error:

“Syntax: FIND_FUNCTION <FunctionName> or <Threadl D>
“Function not found”

Comment:

Bruker Optik GmbH OPUS-NT Programming 12-51

The C/S-Interpreter and its Commands

This direct communication with currently running OPUS functions is intended
only for very special applications. It is mentioned here only for the sake of com-
pleteness. However it is actually reserved to internal programming and is used
for the coupling with other instruments.

12.5.48 WORKBOOK_MODE
Syntax:

“WORKBOOK_MODE ON|OFF”
Description:

Turns the tabs for switching between different windows at the bottom of the
OPUS window on or off.

Return Value:
“OK” or ON|OFF’
Error:

Comment:

When the buttons are deactivated, switching between different windows is no
longer possible. In the case that a simple user interface is required, one prevents
thereby deviations from the operational sequence intended.

12.5.49 GET _SELECTED

Syntax:

“GET_SELECTED”

Description:

Supplies the names of the selected (red bordered) files.
Return Value:

“OK” or error message

Return Value 2:

<name of selected files>

Error:

“Error while getting file info”

12-52

OPUS-NT Programming Bruker Optik GmbH

New Commands

Comment:

The normal behavior of OPUS, to automatically select marked files for the pro-
cessing functions, is extended to self-written extension functions.

12.5.50 LIST_BLOCKS
Syntax:

“LIST_BLOCKS’
Description:

Lists all available spectral data blocks of the OPUS file delivered by the com-
mand READ_FROM_ENTRY or READ_FROM_FILE.

Return Value:

“OK” or error message
Return Value 2:
<number of block names>

<first block name>

<last block name>

Error:

“No Filename or Filenumber defined”
“Error getting blocks”

Comment:

Enables to determine which blocks are containing an unknown file and then
work with the correct ones accordingly.

12.5.51 SHOW_TOOLBAR
Syntax:

“SHOW_TOOLBAR <toolbar>"
Description:

Shows atoolbar. Valid parameters are:

Bruker Optik GmbH OPUS-NT Programming 12-53

The C/S-Interpreter and its Commands

MENU, STANDARD, COMMANDLINE, PLE, DISPLAY, MEASURE,
MANIPULATE, EVALUATE, MDISPLAY, PLOT_PRINT, MACRO, INFO,
USER, SETUP, FILE, BROWSER, STATUSBAR

Return Value:

“OK” or “Already visible”

Error:

“Syntax: SHOW_TOOLBAR <toolbarl D>"
“Unknown Toolbar”

Comment:

Warning: The adjustments on the desktop made with this function are stored
when leaving OPUS. In order to avoid unwanted effects, all modifications of the
original configuration should be cancelled again before the final termination of
the self-written program!

12.5.52 HIDE_TOOLBAR
Syntax:

“HIDE_TOOLBAR <toolbar>"
Description:

Hides atoolbar. Valid parameters are:

MENU, STANDARD, COMMANDLINE, PLE, DISPLAY, MEASURE,
MANIPULATE, EVALUATE, MDISPLAY, PLOT_PRINT, MACRO, INFO,
USER, SETUP, FILE, BROWSER, STATUSBAR

Return Value:

“OK” or “Already visible”

Error:

“Syntax: HIDE_TOOLBAR <toolbarlD>"
“Unknown Toolbar”

Comment:

Warning: The adjustments on the desktop made with this function are stored
when leaving OPUS. In order to avoid unwanted effects, all modifications of the
original configuration should be cancelled again before the final termination of

12-54

OPUS-NT Programming Bruker Optik GmbH

New Commands

the self-written program!

12.5.53 QUICK_PRINT
Syntax:

“QUICK_PRINT”

Description:

Activates the function “Quickprint”. The currently active window will be
printed.

Return Value:
“OK”

Error:
Comment:

To print a certain window with this function, it has to be activated with
ACTIVATE _DISPLAY first.

Bruker Optik GmbH OPUS-NT Programming 12-55

The C/S-Interpreter and its Commands

12-56 OPUS-NT Programming Bruker Optik GmbH

The C/S Interpreter

13 Script Commands

In this chapter you find a list of all commands that are available for scriptsin
OPUS. They are sorted according to the following categories: commands inter-
preted by OPUS, native VBScript commands and the functions of the objects
involved.

13.1 The C/S Interpreter

From within a script all commands of the Client/Server interpreter described in
chapter 12 are available. Thisincludesall command line calls and also all com-
mands that can be transferred via a DDE connection or a pipe, as well as
VBScript functionalities.

13.2 VBScript Language

In the following you will find a simple tutorial that should make you familiar
with the general element of the VBScript language and their use.

13.2.1 VBScript Data Types

In VBScript only one data type exists: variant. Hence, all VBScript functions
return this data type. Variant is able to hold different kinds of information,
depending on how it is used.

In the simplest case, a variant stores numerical values or strings. A variant
behaves like a number if it is used in a numerical context, and like a string if
addressed astext. If you work with data that “looks” like numbers, variant will
interpret them as such. Of course you can aways force numbers to be inter-
preted as text by enclosing them in hyphens. Thisis not required if the datais
obviously text.

Variant Subtypes

Besides the smple classification of numerical values and strings, the category
numerical of a variant can be subdivided. For instance, a date value or a time
value can be of the class numerical. In combination with other date and time
values, the result will always be expressed in the respective format. Of course
there exists alarge number of other types of numerical information e.g. boolean
values or large floating-point numbers. These classes of information are called
subtypes of variant.

Bruker Optik GmbH OPUS-NT Programming 13-1

Script Commands

Usually it is sufficient to ssmply assign variant data of a certain type. Variant
will automatically behave according to the data type. The next table lists the
different sub-types of variant.

Sub-Type Description
variant is not initialized. Numerical variables are set to 0, string variables are a
Empty o
zero-length string ().
Null variant intentionally contains no valid data.
Boolean iseither TRUE or FALSE.
Byte contains an integer ranging from O to 255.
Integer contains an integer ranging from -32,768 bis 32,767.
currenc contains a number ranging from -922,337,203,685,477.5808 to
y 922,337,203,685,477.5807.
Long contains an integer ranging from -2.147.483.648 to 2.147.483.647.
contains a single-precision floating-point number ranging from -3,402823E38
Single to -1,401298E-45 for negative values and from 1,401298E-45 to 3,402823E38 for
positive values.
contains a double-precision floating-point number ranging from
Double -1,79769313486232E308 to -4,94065645841247E-324 for negative values and
from 4,94065645841247E-324 to 1.79769313486232E308 for positive values.
Date contains a number representing a date between 1. January 100 and 31. December
(Time) 9999.
String contains a string of variable length, up to 2 billion characters
Object contains an object.
Error contains an error numbe.
Several conversion functions exist to convert one subtype into another. 1n addi-
tion, the function VarType returns information about how this data ist stored
within variant.
13.2.2 VBScript Variables
A variable is a placeholder that refers to a location in the computers memory
where programs can store their data. The data may change during run time of
the script. For exmple, avariable named “click” can be used to store how many
timesthe user clickson acertain form. Thelocation of the variable in the com-
puters memory isirrelevant. The name of the variable is sufficient to read its
value. In VBScript variables always are of the data type variant.
Variable Declaration
Variables are explicitely declared in a script using the Dim, Public and Private
statement. For example:
13-2 OPUS-NT Programming Bruker Optik GmbH

VBScript Language

Di m Degr eesFahr enhei t

Multiple variables are declared at once by separating them with commas.

Dim Top, Bottom Left, Right

A variable can also be declared implicitely by using its name at any positionin a
script. However, thisislooked upon as bad style; you could mistype a variable
name at one or more places which in turn leads to unpredictable results when
executing the script. Hence, the Option Explicit statement was introduced to
force an explicit variable declaration. Therefore, the Option Explicit statement
should always be the first statement in a script.

Naming Restrictions

The standard rules for naming language elements in VBScript also apply to
variable names:

» they have to start with an alphabet character
* no embedded periods are allowed.
» the maxmum lenght is 255 characters.

* they must be unique within the scope for which they have been
declared.

Validity and Life Time of Variables

If avariable was declared within a procedure, only code from within this proce-
dure can access or change the value of that variable. The variableisvalid only
locally and is therefore called procedure-level variable. In case the variable
declaration is not part of a procedure, the variable is recognized by all proce-
dures of the script. The validity scope of this script-level variable is the script
level.

The life time of a variable is the time during which a variable exists. The life
time extends from the time of the variable declaration until the script is termi-
nated. The life time of a procedure-level variable starts with the variable decla-
ration at the beginning of a procedure and ends with the end of the procedure.
Procedure-level variables are ideal as temporary storage while the procedure is
running. You can use procedure-level variables of the same name in severd
procedures, because each variable is only recognized by the procedure in which
it was defined.

Assigning Valuesto Variables

Values are assigned using an expression that contains the variable name on the
left side of the equal sign and the value on the right side. For example:

B = 200

Bruker Optik GmbH OPUS-NT Programming 13-3

Script Commands

Scalar Data and Arrays

Usually, only asingle value is assigned to avariable. These variables are called
scalar variables. In some casesit isuseful to assign several related valuesto the
same variable. You can create a variable which can contain a series of values,
called array variables. They are declared similar to scalar variables, the only
difference are patentheses that follow the variable name. A single-dimensional
array with 11 elements can be declared as:

Di m A(10)

Although the number enclosed in patentheses is 10 this array consists of 11
elelment, because the index in VBScripts startsat 0. Thistype of array iscaled
afixed size array.

You assign values to the different elements using the index number. Indices
running from 0O to 10 are used in the following example to assign values to the

array:

A(0) = 256
A(1l) = 324
A(2) = 100
A(10) = 55

In the same way (using the index of the array) values can be read from the array
elements:

Avari abl e = A(8)

Arrays are not limited to asingle dimension. Up to 60 dimensions are allowed,
although most people find it difficult to think of more than 3 dimensions. The
dimension is declared by introducing more array parameters in the parentheses
and separated by acomma. The declaration of atwo dimensional array variable
Tablel with 6 rows and 11 columns would look like this:

Di m Tabl e1(5, 10)

The first number in a two-dimensional array aways specifies the number of
rows and the second the number of columns.

The size of arrays may also vary during run time of a script. Thistype of array
iscalled adynamic array. Initialy, the array is declared in a procedure using a
Dim or a ReDim statement, like any ordinary array. But in this case the number
of dimensionsis not stated, the brackets are empty:

Di m ADat aFi el d()
ReDi m Andot her Dat aFi el d()

In order to use such an array, the number of dimensions and their size must be
defined later using the ReDim command. In the following, ReDimis used to set

134

OPUS-NT Programming Bruker Optik GmbH

VBScript Language

theinitia size of the the dynamic array to 25. The subsequent ReDim statement
changes the size to 30, but uses Preserve as keyword, which leaves the content
of the array intact during the change of the size:

ReDi m ADat aFi el d(25)

ReDi m Preserve ADat aFi el d(30)

Thereisno restriction to how often the size of a dynamic array may be changed.
However, decreasing the size of a array will result in loss of data contained in
the removed elements.

13.2.3 VBScript Constants

A constant is an expressive name that takes the place of a number or astring and
does not change. VBScript defines a number of intrinsic constants.

Creating Constants

User-defined constants are created in VBScripts with the Const statement. It
allows to create numerical and string constants and assign them aliteral name:

Const Stringl = "This is ny string."
Const Age = 49

Note that the string literal is hyphenated (" "). Quotation marks are the most
obvious way to distinguish between string values and numeric values. Date/time
literals are enclosed in number signs (#):

Const Deadline = #6-1-97#

There is no difference between constants created in this way and regular vari-
ables. Therefore, you may want to adopt a naming scheme to differentiate con-
stants from variables. Thiswill prevent you from accidentialy trying to assign a
value to a constant while your script is running. For example, you might want to
use a “vb” or “con” prefix on your constant names, or you might name your
constants in capitals. In any case, you should be able to differentiate between
constants and variables to eliminate confusion as you develop more complex
scripts.

13.2.4 VBScript Operators

VBScript has afull range of operators, including arithmetic operators, compari-
Son operators, concatenation operators, and logical operators.

Operator Precedence

When several operations occur in an expression, each part is evaluated and
resolved in a predetermined order called operator precedence. Y ou can override

Bruker Optik GmbH OPUS-NT Programming 13-5

Script Commands

the order of precedence and force some parts of an expression to be evaluated
before others by using parentheses. Operations within parentheses are always
performed before those outside. However, within parentheses standard operator
precedence is maintained.

If an expression contains operators from different categories, arithmetic opera-
tors are evaluated first, comparison operators are evaluated next, and logical
operators are evaluated last. Comparison operators all have equal precedence;
that is, they are evaluated in the | eft-to-right order in which they appear. Arith-
metic and logical operators are evaluated in the following order of precedence:

Arithmetic Comparison L ogical
Description Symbol Description Symbol Description Symbol

Exponentiation A Equality = Logical negation Not
Unary negation - Inequality <> Logical conjunction And
Multiplication * Lessthan < Logical disjunction Or
Division / Greater than > Logical exclusion Xor
Integer division \ Lessthan or equal to <= Logical equivalence Eqv
Modulus arithmetic Mod ;rj:?; than or >= Logical implication Imp
Addition + Object equivalence Is

Subtraction -

String concatenation &

When multiplication and division occur in an expression, each operation is eval-
uated asit occursfrom left toright. Addition and subtraction are handled in the
same way, should they occur together in an expression.

The string concatenation (&) operator is not an arithmetic operator, but in pre-
cedence it ranks after al arithmetic operators and before all comparison opera-
tors. The Is operator is used for object reference comparison. It does neither
compare objects nor their values but checks whether two object references refer
to the same object.

13.2.5 Using Conditional Statements to Control Pro-
gram Execution

Y ou can control the flow of your script with conditional statements and looping
statements. Using conditional statements, you can write VBScript code that
makes decisions and repeats actions. The following conditional statements are
available in VBScript:

Statenent |If...Then...El se
St at enent Sel ect Case

136

OPUS-NT Programming Bruker Optik GmbH

VBScript Language

Making Decissions Using If...Then...Else

The If...Then...Else statement is used to evaluate whether a condition is True or
False and, depending on the result, to specify one or more statements to run.
Usually the condition is an expression that employs a comparison operator to
compare one value or variable with another. If...Then...Else statements can be
nested to as many levels as you need.

Running Statementsif a Condition isTrue

To run only one statement when a condition is True, use the single-line syntax
for the If...Then...Else statement. The following example shows the single-line
syntax. Note that this example omits the Else keyword.

Sub Fi xDat e()

Di m nyDat e

myDat e = #2/ 13/ 95#

If nmyDate < Now Then nyDate = Now
End Sub

To execute more than one line of code, the multiple-line (or block) syntax must
be used. This syntax includes the End If statement, as shown in the following
example:

Sub Al ert User (val ue)
If value = 0 Then
Al ert Label . ForeCol or =
Al ert Label . Font. Bol d =
Al ertLabel . Font.ltalic = True
End |f
End Sub

Running Certain Statementsif a Contidition isTrue

You can use an If...Then...Else statement to define two blocks of executable
statements: one block will be executed if the condition is True, the other block
to run if the condition is False.

Sub Al ert User (val ue)
If value = 0 Then
Al ert Label . ForeCol or =
Al ertLabel . Font.Bold =
Al ertlLabel .Font.ltalic = True
El se

Al ert Label . Forecol or = vbBIl ack
Al ert Label . Font. Bold = Fal se
Al ertlLabel . Font.ltalic = Fal se
End | f
End Sub

Bruker Optik GmbH OPUS-NT Programming 137

Script Commands

Differentiating Between Several Alternatives

The If...Then...Else statement allows you to choose from several alternatives.
Adding the Elself clause expands the functionality of the If...Then...Else state-
ment and allows you to control program flow based on different possibilities:

Sub Report Val ue(val ue)
If value = 0 Then
MsgBox val ue
El self value = 1 Then
MsgBox val ue
El self value = 2 then
Msgbox val ue
El se
Msgbox "Wert aullerhal b des Bereichs!™"
End If

Depending on your needs you can add as many Elself clauses as you want to
provide aternative choices. Extensive use of the Elself clauses often becomes
cumbersome. A better way to choose between severa alternatives can bbe real-
ized with the Select Case statement.

Making Decisionswith Select Case

The Select Case structure provides an alternative to If...Then...Elself for selec-
tively executing one block of statements from among multiple blocks of state-
ments. A Sdlect Case statement provides capability similar to the
If...Then...Else statement, but it makes code more efficient and readable.

A Select Case structure works with a single test expression that is evaluated
once, at the top of the structure. The result of the expression is then compared
with the values for each Case in the structure. If there is a match, the block of
statements associated with that Case is executed:

Sel ect Case CardType
Case "MasterCard"
Di spl ayMCLogo
Val i dat eMCAccount
Case "Visa"
Di spl ayVi saLogo
Val i dat eVi saAccount
Case "American Express"
Di spl ayAMEXCOLogo
Val i dat e AMEXCQAccount
Case El se
Di spl ayUnknownl mage
Pr onpt Agai n
End Sel ect

Note that the Select Case structure eval uates an expression once at the top of the
structure. In contrast, the If...Then...Elself structure can evaluate a different

13-8 OPUS-NT Programming Bruker Optik GmbH

VBScript Language

expression for each Elself statement. Y ou can replace an If...Then...Elself struc-
ture with a Select Case structure only if each Elself statement evaluates the

same expression.
13.2.6 Loops

Using loops alows you to repeat a group of statements. Some loops repeat
statements until a condition is False; others repeat statements until a conditionis
True. There are also loops that repeat statements a specific number of times.

The following looping statements are available in VVBScript:

* Do...Loop: loops while or until aconditionis True.

* While...Wend: loops while a condition is True.

» For...Next: uses a counter to run statements a specified number of
times.

» For Each...Next: repeats a group of statements for each itemin a col-
lection or each element of an array.

Using Do L oops

Y ou can use Do...Loop statements to repeatedly run a block of statements. The
statements are repeated either while a condition is True or until a condition
becomes True.

Repeating Statements While a Condition is True

Use the While keyword to check a condition in a Do...Loop statement. Y ou can
check the condition before you enter the loop (as shown in the following Chk-
FirstWhile example), or you can check it after the loop has run at least once (as
shown in the ChkLastWhile example). In the ChkFirstWhile procedure, if
myNumis set to 9 instead of 20, the statementsinside the loop will never run. In
the ChkLastWhile procedure, the statements inside the loop run only once
because the condition is already False.

Sub ChkFirstWile()
Di m counter, nyNum
counter =0
myNum = 20
Do While myNum > 10
myNum = nyNum - 1
counter = counter + 1
Loop
MsgBox "The Loop was repeated " & counter &
" times."
End Sub

Sub ChkLast Wi | e()
Di m counter, nyNum

Bruker Optik GmbH OPUS-NT Programming 13-9

Script Commands

counter =0
nmyNum = 9
Do
myNum = myNum - 1
counter = counter + 1
Loop While myNum > 10
MsgBox "The Loop was repeated " & counter &
" times."
End Sub

Repeating a Statement Until a Condition Becomes True

Y ou can use the Until keyword in two ways to check a condition in a Do...Loop
statement. Y ou can check the condition before you enter the loop (as shown in
the following ChkFirstUntil example), or you can check it after the loop has run
at least once (as shown in the ChkLastUntil example). Aslong as the condition
is False, the looping occurs.

Sub ChkFirstUntil ()
Di m counter, nyNum
counter =0
myNum = 20
Do Until myNum = 10
myNum = myNum - 1
counter = counter + 1
Loop
MsgBox "The Loop was repeated " & counter &
" times."
End Sub

Sub ChkLastUntil ()
Di m counter, nyNum
counter =0
nmyNum = 1
Do
myNum = myNum + 1
counter = counter + 1
Loop Until myNum = 10
MsgBox "The Loop was repeated " & counter &
" times."
End Sub

Exiting a Do...Loop Statement from Inside the L oop

You can exit aDo...Loop by using the Exit Do statement. Because you usually
want to exit only in certain situations, such as to avoid an endless loop, you
should use the Exit Do statement in the True statement block of an
If...Then...Else statement. If the condition is False, the loop runs as usual.

In the following example, nyNumis assigned a value that creates an endless
loop. The If...Then...Else statement checks for this condition, preventing the
endless repetition.

13-10

OPUS-NT Programming Bruker Optik GmbH

VBScript Language

Sub Exi t Exanpl e()
Dim counter, myNum
counter =0
nmyNum = 9
Do Until myNum = 10
myNum = nyNum - 1
counter = counter + 1
If myNum < 10 Then Exit Do
Loop
MsgBox "The Loop was repeated " & counter &
" times."
End Sub

13.2.6.1 Using While...Wend

The While...Wend statement is provided in VBScript for developers who are
familiar with its usage. However, because of the lack of flexibility in
While...Wend, it is recommended that you use Do...Loop instead.

Using For...Next

For...Next statements are used to run a block of statements a specific number of
times. For loops, use a counter variable whose value is increased or decreased
with each repetition of the loop.

For example, the following procedure causes a procedure called MyPr oc to be
executed 50 times. The For statement specifies the counter variable x and its
start and end values. The Next statement increments the counter variable by 1.

Sub DoMyPr oc50Ti mes()

D m x
For x =1 To 50
MyPr oc
Next
End Sub

Using the Step keyword, you can increase or decrease the counter variable by
the value you specify. In the following example, the counter variable j isincre-
mented by 2 each time the loop repeats. When the loop is finished, total is the
sum of 2, 4, 6, 8, and 10.

Sub TwosTot al ()
Dmj, total

For | = 2 To 10 Step 2
total = total + j
Next
MsgBox "Die Summe ist " & total
End Sub

To decrease the counter variable, you use a negative Step value. You must
specify an end value that is less than the start value. In the following example,

Bruker Optik GmbH OPUS-NT Programming 13-11

Script Commands

the counter variable myNumis decreased by 2 each time the loop is repeated.
When the loop isfinished, total isthe sum of 16, 14, 12, 10, 8, 6, 4, and 2.

Sub NewTot al ()
Dim myNum t ot al
For nyNum = 16 To 2 Step -2
total = total + nyNum
Next
MsgBox "The sumis " & total
End Sub

You can exit any For...Next statement before the counter reaches its end value
by using the Exit For statement. Because you usually want to exit only in cer-
tain situations, such as when an error occurs, you should use the Exit For state-
ment in the True statement block of an If..Then...Else statement. If the
condition is False, the loop runs as usual .

Using For Each...Next

A For Each...Next loop is similar to a For...Next loop. Instead of repeating the
statements a specified number of times, a For Each...Next loop repeats a group
of statements for each item in a collection of objects or for each element of an
array. Thisisespecially helpful if you don't know how many elementsarein a
collection.

13.2.7 VBScript Procedures

In VBScript there are two kinds of procedures; the Sub procedure and the Func-
tion procedure.

Sub Procedures

A sub procedure is a series of VBScript statements, enclosed by Sub and End
Sub statements, that perform actions but don't return avalue. A Sub procedure
can take arguments (constants, variables, or expressions that are passed by a
calling procedure). If a Sub procedure has no arguments, its Sub statement
must include an empty set of parentheses ().

The following Sub procedure uses two intrinsic (or built-in) VBScript func-
tions, MsgBox and InputBox, to prompt a user for some information. It then dis-
plays the results of a calculation based on that information. The calculation is
performed in a Function procedure created using VBScript. The Function pro-
cedure is shown after the following discussion.

Sub Convert Tenp()
tenp = I nputBox("Enter the Tenperature in
Fahrenheit.", 1)
MsgBox "The Tenperature is " & Celsius(tenp) &
Degree Cel sius."
End Sub

1312

OPUS-NT Programming Bruker Optik GmbH

VBScript Language

Function Procedures

A Function procedure is a series of VBScript statements enclosed by the Func-
tion and End Function statements. A Function procedure is similar to a Sub
procedure, but can also return a value. A Function procedure can take argu-
ments (constants, variables, or expressions that are passed to it by a calling pro-
cedure). If aFunction procedure has no arguments, its Function statement must
include an empty set of parentheses. A Function returns a value by assigning a
value to its namein one or more statements of the procedure. The return type of
aFunction isalways a Variant.

In the following example, the Celsius function calculates degrees Celsius from
degrees Fahrenheit. When the function is called from the ConvertTemp Sub
procedure, a variable containing the argument value is passed to the function.
The result of the calculation is returned to the calling procedure and displayed
in a message box.

Sub Konvert Tenmp()
temp = I nputBox("Enter the Tenperature in
Fahrenheit.", 1)
MsgBox "The Tenperature is " & Celsius(tenp) &
Degree Cel sius.”
End Sub

Functi on Cel si us(G adF)
Celsius = (GadF - 32) * 5/ 9
End Function

Forwarding Data To or From Procedures

Each piece of data is passed into your procedures using an argument. Argu-
ments serve as placeholders for the data you want to pass into your procedure.
When you create a procedure using either the Sub statement or the Function
statement, parentheses must be included after the name of the procedure. Any
arguments are placed inside these parentheses, separated by commas. For
example, in the following example, fDegrees is a placeholder for the value being
passed into the Celsius function for conversion:

Function Cel si us(fDegrees)

Cel sius = (fDegrees - 32) * 5/ 9
End Function

To get data out of a procedure, you must use a Function. Remember, a Function
procedure can return avalue; a Sub procedure can't.

Using Sub and Function Proceduresin Code

A Function in your code must always be used on the right side of a variable
assignment or in an expression. For example:

Bruker Optik GmbH OPUS-NT Programming 13-13

Script Commands

Tenp = Cel si us(fDegrees)
or

MsgBox "The tenperature is " & Cel sius(fDegrees) &
Degree Cel sius.”

To call a Sub procedure from another procedure, you can just type the name of
the procedure along with values for any required arguments, each separated by a
comma. The Call statement is not required, but if you do use it, you must
enclose any arguments in parentheses.

The following example shows two calls to the MyPr oc procedure. One uses the
Call statement in the code; the other doesn't. Both do exactly the same thing.

Call MyProc(firstArg, secondArQg)
MyProc firstArg, secondArg

Notice that the parentheses are omitted in the call when the Call statement isn't
used.

13.2.8 VBScript Coding Converntions
Conventionsfor Programming

Coding conventions are suggestions that may help you write code using
Microsoft Visual Basic Scripting Edition. Coding conventions can include the
following:

» Naming conventions for objects, variables, and procedures
» Commenting conventions
» Text formatting and indenting guidelines

The main reason for using a consistent set of coding conventionsis to standard-
ize the structure and coding style of a script or set of scripts so that you and oth-
ers can easily read and understand the code. Using good coding conventions
resultsin precise, readable, and unambiguous source code that is consistent with
other language conventions and as intuitive as possible.

Constant Naming Conventions

Earlier versions of VBScript had no mechanism for creating user-defined con-
stants. Constants, if used, were implemented as variables and distinguished
from other variables using all uppercase characters. Multiple words were sepa-
rated using the underscore (_) character. For example:

USER LI ST_MAX
NEW LI NE

13-14

OPUS-NT Programming Bruker Optik GmbH

VBScript Language

While thisis still an acceptable way to indentify your constants, you may want
to use an alternative naming scheme, now that you can create true constants
using the Const statement. This convention uses a mixed-case format in which
constant names have a*“con” prefix. For example:

conYour OmConst ant
Variable Naming Conventions

For purposes of readability and consistency, use the following prefixes with
descriptive names for variablesin your VBScript code.

Subtype Prefix Example
Boolean bin BInFound
Byte byt BytRasterData
Date (Time) dtm DtmStart
Double dbl DblTolerance
Error err ErrOrderNum
Integer int IntQuantity
Long Ing LngDistance
Object obj ObjCurrent
Single sng SngAverage
String str StrFirstName

Variable Scope

Variables should always be defined with the smallest scope possible. VBScript
variables can have the following scope.

Scope Where Variabel Is Declared Visibility

Visible in the procedure in which it

Procedure Level Event, Function, or sub procedure .
is declared.

HEAD section of an HTML page, | Visible in every procedure in the

Script Level outside any procedure. script.

Variable Scope Prefixes

As script size grows, so does the value of being able to quickly differentiate the
scope of variables. A one-letter scope prefix preceding the type prefix provides
this, without unduly increasing the size of variable names.

Bruker Optik GmbH OPUS-NT Programming 13-15

Script Commands

Subtype Prefix Example
Procedure Level None dbl Vel ocity
Script Level S shinCalclnWork

Descriptive Variable and Procedure Names

The body of avariable or procedure name should use mixed case and should be
as complete as necessary to describe its purpose. In addition, procedure names
should begin with a verb, such as InitNameArray or CloseDialog.

For frequently used or long terms, standard abbreviations are recommended to
help keep name length reasonable. 1n general, variable names greater than 32
characters can be difficult to read. When using abbreviations, make sure they
are consistent throughout the entire script. For example, randomly switching
between Cnt and Count within a script or set of scripts may lead to confusion.

Object Naming Conventions

The following table lists recommended conventions for objects you may

encounter while programming VBScript.

Object type Prefix Example
CheckBox chk chkReadOnly
ComboBox, drop-down ListBox cho cboDeutsch
CommandButton cmd cmdExit
CommonDialog dig digFileOpen
Frame fra fralL anguage
horizontal ScrollBar hsb hsbVolume
Image img imglcon
Label Ibl IblIHelpM essage
Line lin linVertical
ListBox Ist IstPolicyCodes
Spin spn spnPages
TextBox txt spnLastName
vertical ScrollBar vsb vsbRate
Slider sld sldScale

Code Commenting Conventions

All procedures should begin with a brief comment describing what they do.
This description should not describe the implementation details (how it does it)

13-16

OPUS-NT Programming

Bruker Optik GmbH

VBScript Language

because these often change over time, resulting in unnecessary comment main-
tenance work, or worse, erroneous comments. The code itself and any neces-
sary inline comments describe the implementation.

Arguments passed to a procedure should be described when their purposeis not
obvious and when the procedure expects the arguments to be in a specific range.
Return values for functions and variables that are changed by a procedure, espe-
cialy through reference arguments, should also be described at the beginning of
each procedure.

Procedure header comments should include the following section headings. For
examples, see the “Formatting Your Code” section that follows.

Section Heading Comment Contents
Purpose What the procedure does (not how).
ASSUMDLIONS List of any externa variable, control, or other element whose state
P affects this procedure.
List of the procedure’s effect on each external variable, control, or
Effects
other element.
Explanation of each argument that isn't obvious. Each argument
Inputs ; L
should be on a separate line with inline comments.
Return Vaues Explanation of the value returned.

The following points should be taken into account:

» Every important variable declaration should include an inline com-
ment describing the use of the variable being declared.

e Variables, controls, and procedures should be named clearly enough
that inline comments are only needed for complex implementation
details.

» At the beginning of your script, you should include an overview that
describes the script, enumerating objects, procedures, algorithms,
dialog boxes, and other system dependencies. Sometimes a piece of
pseudocode describing the algorithm can be helpful.

Formatting Your Code

Screen space should be conserved as much as possible, while still allowing code
formatting to reflect logic structure and nesting. Here are afew pointers:

» Standard nested blocks should be indented four spaces.

* The overview comments of a procedure should be indented one
space.

* The highest level statements that follow the overview comments
should be indented four spaces, with each nested block indented an
additional four spaces.

Bruker Optik GmbH OPUS-NT Programming 13-17

Script Commands

13.2.9 VBScript Functions

A complete reference of al available VVBScript functions is beyond the scope of
this manual. The functions listed in the following are only a part of what is
available in the full edition of VisuaBasic. If a function also exists in
VBScript, it is used similar; a description can be taken from the VisualBasic
documentation. Hence we restrict the following list to all functionsthat are also
available in VBScript.

Control Flow

Do...Loop
For...Next

For Each...Next
If.. Then...Else
Select Case
While...Wend
Array

Dim, Private, Public, ReDim
|SArray

Erase

L Bound, UBound

Dates/Times

Date, Time

DateAdd, DateDiff, DatePart

DateSerial, DateVaue

Day, Month, Weekday, WeekdayName, Y ear
Hour, Minute, Second

Now

TimeSeria, TimeVaue

Declar ations

Const
Dim, Private, Public, ReDim
Function, Sub

I nput/Output

InputBox
LoadPicture
MsgBox

13-18

OPUS-NT Programming Bruker Optik GmbH

VBScript Language

Error Handling

On Error
Err

Comments

Commentsusing ' or Rem

Constants/Literals

Empty
Nothing
Null

True, False

Conversions

Abs

Asc, AscB, AscW
Chr, ChrB, Chrw
CBool, CByte

CCur, CDate

CDhbl, Cint

CLng, CSng, CStr
DateSerial, DateVaue
Hex, Oct

Fix, Int

Sgn

TimeSeria, TimeVaue

Literals

Empty
False
Nothing
Null
True

M ath

Atn, Cos, Sin, Tan

Exp, Log, Sar
Randomize, Rnd

Bruker Optik GmbH OPUS-NT Programming 13-19

Script Commands

Objects

CreateObject
Err-Objekt
GetObject

Operators

Addition (+), Subtraction (-)
Exponentiation (")
Modulo arithmetic (Mod)

Multiplication (*), Division (/), Integer Division (\)

Negation (-)

String Concatenation (&)

Equality (=), Inequality (<>)

Less Than (<), Less Than or Equal To (<=)

Greater Than (>), Greater Than or Equal To(>=)

Is
And, Or, Xor
Eqv, Imp

Options
Option Explicit
Procedures

Call
Function, Sub

Rounding

Abs
Int, Fix, Round

Sgn

Script EnginelD
ScriptEngine
ScriptEngineBuildVersion

ScriptEngineMgorVersion
ScriptEngineMinorVersion

Variants

ISArray
IsDate

13-20

OPUS-NT Programming

Bruker Optik GmbH

VBScript Language

| SEmpty
IsNull
ISNumeric
IsObject
TypeName
VarType

M iscellaneous

RGB-Functions
Strings

Asc, AscB, AscW
Chr, ChrB, Chrw
Filter, InStr, InStrB
InStrRev

Join

Len, LenB

LCase, UCase
Left, LeftB

Mid, MidB

Right, RightB
Replace

Space

Split

StrComp

String

StrReverse

LTrim, RTrim, Trim

Formatting Strings

FormatCurrency
FormatDateTime
FormatNumber
FormatPercent

Assignments

Set

13.2.10 File and System Handling

Files are accessed via the objects of the VBScript run time library, which pro-
vides the following objects: Dictionary, Drive, File, Folder, FileSystemObjekt,
TextStream. These in turn provide the functions listed here.

Bruker Optik GmbH OPUS-NT Programming 13-21

Script Commands

Dictionary

Add

Exists
Items
Keys
Remove
RemoveAll
Count

Item

Key
Drive, File, Folder

Copy

Delete

Move
OpenAsTextStream
Attributes

Count
DateCreated
Datel astAccessed
Datel astModified
Drive
ParentFolder
Name

Path

ShortName
ShortPath

Size
AvailableSpace
Drivel etter
DriveType
FileSystem
FreeSpace
|sReady
RootFolder
SerialNumber
ShareName
TotalSize
VolumeName

FileSystemObject

BuildPath
CopyFile
CopyFolder

13-22

OPUS-NT Programming

Bruker Optik GmbH

JavaScript

13.3

CreateFolder
CreateTextFile
DeleteFile
DeleteFolder
DriveExists
FileExists
FolderExists
GetAbsolutePathName
GetBaseName
GetDrive
GetDriveName
GetExtensionName
GetFile
GetFileName
GetFolder
GetParentFolderName
GetSpecial Folder
GetTempName
MoveFile
MoveFolder
OpenTextFile
Drives

TextStream

Close

Read

ReadAll
ReadLine

Skip

SkipLine

Write
WriteBlankLines
WriteLine
AtEndOfLine
AtEndOfStream
Column

Line

JavaScript

JavaScript will also be processed by the OPUS Scripting Engine, in this manual
however we document and support mainly VBScript in view of a uniform use.
If you prefer JavaScript you find a good introduction and reference on the fol-

lowing web pages.

Bruker Optik GmbH

OPUS-NT Programming

13-23

Script Commands

http://msdn. m crosoft.com scripting/default.htnf/
scripting/jscript/default.htm

Regrettably, most documentation is oriented towards using scripts for the
design of HTML pages.

13.4 Functions/Events of Forms

The functions and events of an OPUS script form have aready been used to
transmit commands to OPUS. In the following you will find an extensive list of
all available functions and events:

Visible

Property of the form, indicates whether the form is visible or not, can either
have the value true or false.

Show

Method to visualize the form.

Hide

Method to hide the form.

Close

Method to close the form and end the script.

Enable

Enablesinput to the form by keyboard or mouse, in combination with a parame-
ter true or false.

Minimize

Method to minimize the form.
Maximize

Method to maximize the form.
Restore

Method to reset the size of theform to itsinitial value.

13-24 OPUS-NT Programming Bruker Optik GmbH

Functions/Events of Forms

GetApp

Returns an object of type application. This object represents the OPUS applica-
tion and in turn provides functions for the handling of forms. This allows to
address other forms dynamically, create new scripts from arunning script, and
exchange data with them.

OpenForm

Opens a new form, the name of the script file (including the path) has to
be specified. You can indicate (with the values true or false) if a script
should be used which was already opened and if the file should be opened
in edit mode.

NewForm
Opens a new, blank form.
FormByName

Returns an interface to a form object already running. The internal form
nameistransferred as the parameter. The form nameislisted asID inthe
forms Properties.

Caption
Caption reads or writes atext astitle in the window of the form.

DoEvents

DoEvents hands the process control over to the system until the system has pro-
cessed al pending events (like paint messages).

Caution! Each time the process control is temporarily transferred to another
thread, care has to be taken that the procedure will not be called by any part of
the code, before the first call isterminated. Otherwise the results are unpredict-
able.

OpusCommand

Function to start OPUS commands. The function returns immediately after
transmitting the text command. The command is then processed by OPUS and
then the result forwarded to the form by means of an OnOpusResult event.

OpusExecute

Executes an OPUS command. The command will run as background task and
the result will not be returned.

Bruker Optik GmbH OPUS-NT Programming 13-25

Script Commands

OpusRequest

Executes an OPUS command and waits until OPUS has finished the command
processing. The result will be returned directly as text. While normally only a
single event is being processed at a time, this function allows processing of
additional events until OPUS returns its result. The execution of the event
which calls OpusRequest is postponed until OPUS answers. Events, which are
normally called after this procedure may have already been executed. The con-
sequences of the independent time lines have to be taken into account in the
script.

OpusRequestData

Sends commands to OPUS, similar to OpusRequest. In addition, a data array
parameter is exchanged. This parameter is able to transfer adata field to OPUS
or to receive binary datafrom OPUS. Like in the case of OpusRequest precau-
tions have to be taken to avoid unwanted side effects resulting from parallel
data processing.

SetWindowPos

Positions and dimensions a window using four coordinates: X, y, dx, dy.

SetResult

Setsthe result of a script astext, to be transmitted to the requesting OPUS func-
tion upon closing the script. To make use of this result, the script has to be
called using the OPUS VisualBasic cript funtion.

GetDocName

Returns the name including path of the active script. Makesit possibleto run a
script on different machines by referring to relative path statements. This com-
mand becomesfirst available after the form has been loaded (and not upon load-
ing the form).

HideControl

Hides a control element. The name of the object in the form has to be stated
(e.g. CommandBut t on1l).

ShowControl

Reveals a hidden control element. The name of the element has to be stated in
theform (i.e. CormandBut t on 1).

13-26

OPUS-NT Programming Bruker Optik GmbH

Microsoft Forms

OnL oad

Event which is triggered upon loading aform.

OnUnL oad

Event which is triggered upon unloading a form.

OnOpusResult

Event which is triggered after an OPUS command has been processed. Three
text fields and if necessary a binary data array will be returned. The contents of
the text fields may vary with the function executed; the first string usually isthe
“OK” statement or an error statement, that indicates whether the command
could be processed successfully. The other fields contain the result. If an
OPUS data manipulation function has been started with a text command, the
first parameter holds the names (numbers) of the resulting files and the second
parameter and return values. If binary data transfer was chosen, the fourth
parameter contains the data array.

OnOpuslnform

This function is used by OPUS to transmit a parameter to a script. If for exam-
ple the function VisualBasic Script is called in combination with script parame-
ters, an OnOpuslinform event is triggered at the start of the program. Thetextis
forwarded to the event handling routine as a parameter.

This event is also employed for the Automatic Accessory Recognition; if an
accessory with AAR support is inserted into the spectrometer the accessory
code will be transferred to a special script.

13.5 Microsoft Forms

Microsoft Forms are control elementsthat can be used to create and modify cus-
tom forms and dialog boxes. They are also used to create VisuaBasic for
Application Forms in Microsoft Word. This chapter gives a brief overview of
the existing elements their use.

All functionalities of these controls can be classified to one of the following cat-
egories:

Properties — By opening the Properties dialog of an element in the Form Editor
you can find out which properties and values are supported by this element. All
available propertieswill belisted. Usually, they can also be set or read from the
program.

Bruker Optik GmbH OPUS-NT Programming 13-27

Script Commands

Events and related handling routines — An event box in the Code/Modules view
shows which events can occur for an object. Here, all required functions can be
created.

Methods — Elements use methods to independently process certain tasks. Since
no selection box exist for the methods, short lists are is presented here. An
extensive treatment can be found in Microsofts documentation.

13.5.1 Checkbox

Displays the selection state of an item. Use a CheckBox to give the user a
choice between two values such as YesNo, True/False, or On/Off. When the
user selects a CheckBox, it displays a specia mark (such as an X) and its cur-
rent setting is Yes, True, or On; if the user does not select the CheckBox, it is
empty and its setting is No, False, or Off. Depending on the value of the Tri-
pleState property, a CheckBox can also have anull value.

13.5.2 Combobox Control

Combines the features of a ListBox and a TextBox. The user can enter a new
value, as with a TextBox, or the user can select an existing value as with aList-
Box.

Supported Methods:

Addl t em

d ear

Dr opDown
Renovel t em
Copy

Cut

Past e

13.5.3 CommandButton

Starts, ends, or interrupts an action or series of actions. The macro or event pro-
cedure assigned to the CommandButton's click event determines what the Com-
mandButton does. For example, you can create a CommandButton that opens
another form. You can aso display text, a picture, or both on a CommandBut-
ton.

13.5.4 Frame Control

Creates afunctional and visual control group. All option buttonsin a Frame are
mutually exclusive, so you can use the Frame to create an option group. You
can also use a Frame to group controls with closely related contents. For exam-
ple, in an application that processes customer orders, you might use a Frame to
group the name, address, and account number of customers.

13-28

OPUS-NT Programming Bruker Optik GmbH

Microsoft Forms

Y ou can also use aFrame to create a group of toggle buttons, but the toggle but-
tons are not mutually exclusive.

Supported Methods:

Copy

Cut

Past e

RedoActi on

Repai nt

Scrol |

Set Def aul t TabOr der
UndoActi on

13.5.5 Image Control

Displays apicture on aform. The Image lets you display a picture as part of the
datain aform. For example, you might use an Image to display employee pho-
tographs in a personnel form.

The Image lets you crop, size, or zoom a picture, but does not allow you to edit
the contents of the picture. For example, you cannot use the Image to change
the colors in the picture, to make the picture transparent, or to refine the image
of the picture. Y ou must use image editing software for these purposes

13.5.6 Label Control

Displays descriptive text. A Label control on a form displays descriptive text
such astitles, captions, pictures, or brief instructions.

13.5.7 ListBox Control

Displaysalist of values and lets you select one or more. |If the ListBox is bound
to a data source, then the ListBox stores the selected value in that data source.

The ListBox can either appear asalist or as agroup of OptionButton controls or
CheckBox controls.

Supported Methods:

Addl t em
Cl ear
Renovel tem

13.5.8 Multipage Control

Presents multiple screens of information as asingle set. A MultiPage is useful
when you work with alarge amount of information that can be sorted into sev-
eral categories. For example, use a MultiPage to display information from an
employment application. One page might contain personal information such as

Bruker Optik GmbH OPUS-NT Programming 13-29

Script Commands

name and address; another page might list previous employers; a third page
might list references. The MultiPage lets you visually combine related informa-
tion, while keeping the entire record readily accessible.

New pages are added to the right of the currently selected page rather than adja-
cent to it.

Note: The MultiPage is a container of a Pages collection, each of which con-
tains one or more Page objects.

13.5.9 OptionButton Control

Shows the selection status of oneitemin agroup of choices. Use an OptionBut-
ton to show whether asingle item in agroup is selected. Note that each Option-
Button in a Frame is mutually exclusive.

If an OptionButton is bound to a data source, the OptionButton can show the
value of that data source as either Yes/No, True/False, or On/Off. If the user
selects the OptionButton, the current settingis Yes, True, or On; if the user does
not select the OptionButton, the setting is No, False, or Off.

Depending on the value of the TripleState property, an OptionButton can also
have anull value.

Y ou can also use an OptionButton inside a group box to select one or more of a
group of related items.

13.5.10 ScrollBar Control

Returns or sets the value of another control based on the position of the scroll
box. A ScrollBar is astand-alone control you can place on aform. Itisvisualy
like the scroll bar you seein certain objects such asa ListBox or the drop-down
portion of a ComboBox. However, unlike the scroll bars in these examples, the
stand-alone ScrollBar is not an integral part of any other control.

To use the ScrollBar to set or read the value of another control, you must write
code for the ScrollBar’s events and methods. For example, to use the ScrollBar
to update the value of a TextBox, you can write code that reads the Value prop-
erty of the ScrollBar and then sets the VValue property of the TextBox.

Note: To create a horizontal or vertical ScrollBar, drag the sizing handles of the
ScrollBar horizontally or vertically on the form.

13.5.11 SpinButton Control

Increments and decrements numbers. Clicking a SpinButton changes only the
value of the SpinButton. Y ou can write code that uses the SpinButton to update
the displayed value of another control. For example, you can use a SpinButton

13-30

OPUS-NT Programming Bruker Optik GmbH

Microsoft Forms

to change the month, the day, or the year shown on adate. You can also use a
SpinButton to scroll through arange of values or alist of items, or to change the
value displayed in atext box.

To display a value updated by a SpinButton, you must assign the value of the
SpinButton to the displayed portion of a control, such as the Caption property of
a Label or the Text property of a TextBox. To create a horizontal or vertical
SpinButton, drag the sizing handles of the SpinButton horizontally or vertically
on the form.

13.5.12 TabStrip Control

Presents a set of related controls as a visual group. You can use a TabStrip to
view different sets of information for related controls.

Note: The TabStrip isimplemented as a container of a Tabs collection, which in
turn contains a group of Tab objects.

13.5.13 TextBox Control

Displays information from a user or from an organized set of data. A TextBox
is the control most commonly used to display information entered by a user.
Also, it can display a set of data, such as atable, query, worksheet, or a calcula-
tion result. If a TextBox is bound to a data source, then changing the contents
of the TextBox also changes the value of the bound data source.

Formatting applied to any piece of text in a TextBox will affect all text in the
control. For example, if you change the font or point size of any character in the
control, the change will affect all charactersin the control.

Supported Methods:

Copy
Cut
Past e

13.5.14 ToggleButton Control

Shows the selection state of an item. Use a ToggleButton to show whether an
itemisselected. If a ToggleButton is bound to a data source, the ToggleButton
shows the current value of that data source as either Yes/No, True/False, On/
Off, or some other choice of two settings. If the user selects the ToggleButton,
the current setting is Yes, True, or On; if the user does not select the ToggleBut-
ton, the setting is No, False, or Off. If the ToggleButton is bound to a data
source, changing the setting changes the value of that data source. A disabled
ToggleButton shows a value, but is dimmed and does not allow changes from
the user interface.

Bruker Optik GmbH OPUS-NT Programming 13-31

Script Commands

You can aso use a ToggleButton inside a Frame to select one or more of a
group of related items.

13.5.15 Timer Control

Although the Timer Control is rather a part of the Internet Explorer we list it
here, because it isused in asimilar manner. It servesto call functions after pre-
defined periods of time.

Supported Methods:
About Box

13.5.16 Debugging Scripts

To debug OPUS scripts in single-step mode you should preferably use an uni-
versal script debugger. On its home page Microsoft offers afreeware version of
ascript debugger. We also recommend the InterDev packet which is part of the
Microsoft Visual Studio. This software, if installed, it will automatically open
when an error in an OPUS script occurs. Y ou can view and edit variables, and
process lines step-by-step. If the script is intended to run from the start in the
debugger, insert a stop command at the beginning of the script.

13-32 OPUS-NT Programming Bruker Optik GmbH

Index

Numerics

2D Correlation 11-15, 11-18
3D Files 2-1, 11-3

A

AB/TR conversion 11-19
Abort Macro 5-12
ABTR 10-8

ACTIVATE DIALOG 12-44
Active X 4-1

Add Variable Button 5-4
Arguments 9-6

Arrays 5-10, 9-2, 13-4
ASCII 12-9

Assemble GC 11-12
Autocorrect 5-2

Average 6-36, 6-39, 10-9
Averaging 11-17

B

Baseline Correction 6-6, 6-8, 6-11, 6-13, 6-
17, 6-18, 6-20, 6-27, 6-29, 6-31, 6-32, 6-33,
6-34, 6-60, 10-10, 11-18

Batch files 2-1

BINARY 12-9

Black Body 11-16

BlackBody 10-10

BUTTON 12-20

Buttons 8-1

BYTE _MODE 12-27

C

C/S Commands
obsolete 12-25
old 12-2
Cdculations 5-19
CdlMacro 6-68, 6-71, 9-15
Caption 13-25
CarbOx Analysis 11-19
Change Output File 5-14
ChangeDataBlockType 10-21
Checkbox 13-28
Client program 7-4
Client/Server Commands 7-5, 12-1
New 12-27
Client/Server function 5-20
Client/Server Interpreter 12-1, 13-1
Clonecount 3-1, 12-4

Close 13-24
CLOSE OPUS 12-41
CLOSE _PIPE 12-3
CLOSE _WINDOW 12-31
CloseDisplayWindow 9-32
Cluster Analysis 11-16
COMBOBOX 12-20
Combobox 5-17, 13-28
Command Buttons 6-3
Command Line 3-1, 5-1, 9-6
Command Line Arguments 2-4
Command Line Parameters 4-1
Command Lines 5-8
COMMAND_LINE 12-43
COMMAND_MODE 12-40
COMMAND_SAY 12-35
CommandButton 13-28
Commands
script 13-1
Communication 2-3, 3-2, 7-1
Command Processing 7-2
Error Handling 7-3
Establishing 7-5
Initialization 7-1
Notification 7-3
Parameters 11-24
Program Termination 7-4
Reading Data 7-8
time behaviour 12-20
Compare Spectra 11-15
Compile 5-13
Conditional Statements 13-6
Conformity Test 11-12
Conversion Functions 5-21
Convert 10-10
Convert Spectra 11-19
Copy 9-29
COPY_DATA 12-16
CopyDataBlock 10-21
COUNT_ENTRIES 12-3
Curve Fitting 11-14
Cut 10-11, 11-19

D

Data2-7

Data Acquisition Parameters 11-4
Data Blocks 3-1, 5-17

Data Block-Specific Parameters 11-1
Data Manipulation 7-7

Data Path Parameters 11-21
DATA_POINTS 12-10
DATA_VALUES 12-9
DDE Client 3-2, 4-1

DDE Command Page 2-6
DDE communication 7-1
DDE Connection 8-6, 12-27
DDE connection 8-6

DDE Server 1-1, 2-8, 3-2, 4-1
Decissions 13-7
Deconvolution 10-11, 11-14
Delete 6-75, 9-30
DeleteDataBlock 10-21
Derivative 10-12, 11-2
Derivatives 11-2

Display Functions 9-31
Display Limits 11-18
DisplaySpectrum 9-32
DMA Extraction 11-15
Do...Loop 13-10

DoEvents 13-25
DOUBLE_MODE 12-28
Drop-down lists 5-4
Dynamic Data Exchange 2-3

E

Edit Parameter 6-41, 6-43
Else 6-55, 6-60, 6-65
Enable 13-24
Endif 6-55, 6-60, 6-65
EndLoop 6-8, 6-11, 6-13, 6-20, 6-27, 6-33,
6-34, 6-36, 6-39, 6-47, 6-61, 6-71, 6-75, 9-
17
Enter Expression 5-5, 9-23
Epi Analysis11-19
Events 8-2
Execute 2-7
Execute DDE Transaction 2-6
EXECUTE_MODE 12-40
Expression 9-23
External Program 2-1, 4-1, 5-21, 7-1, 11-25
File2-4
Name 2-4
Parameters 2-4
External Program Command 2-2
ExternalProgram 10-33
Extrapolation 10-12, 11-22

F

FFT 10-12

File Functions 9-27

File Handling 5-17

FILE_ PARAMETERS 12-20
Filesfor VB Script 2-10
FindString 6-55, 9-14
FLOAT_MODE 12-28
FLOATCONV_MODE 12-29
Flow Control 1-1, 6-3

Flow Control Functions 9-16
For Each...Next 13-12
For...Next 13-11

Form Editor 2-10
FormByName 13-25
Forms8-1, 13-24

Fourier Transformation 11-13
Frame Control 13-28
FreqCalibration 10-14
Frequency Calibration 11-3, 11-18
FromReportHeader 6-47, 6-71, 9-24
FromReportMatrix 6-47, 9-25
FT-Parameters 11-9

Function Procedures 13-13

G

Generate Straight Line 11-19
GET_BASEPATH 12-33
GET_BENCH 12-34
GET_DATAPATH 12-33
GET_DISPLAY 12-29
GET_LANGUAGE 12-32
GET_OPUSPATH 12-32
GET_USERNAME 12-34
GET_USERRIGHTS 12-45
GET_WORKPATH 12-33
GetApp 13-25

GetArrayCount 6-27, 9-13
GetDisplayLimits 9-33
GetDocName 13-26
GetEnumList 9-25, 9-26
GetLength 9-14
GetMacroPath 6-68, 6-71, 9-13
GetOpusPath 6-18, 6-20, 9-12
GetParameter 6-41, 6-43, 9-24
GetTime 6-61, 6-64, 6-65, 9-30, 9-31
GetUserPath 9-12, 9-13
GetVersion 9-13

Goto 6-51, 6-53, 6-65, 9-17

GRAMS Export 11-21

H

HEADER ELEMENT 12-39
HEADER_INFO 12-36
HEXSTRING_MODE 12-28
Hidden 2-9

Hide 13-24

HideControl 13-26

Identitity Test 11-15

If 6-55, 6-60, 6-65, 9-18

If ... Else... Endif 9-18
Image Control 13-29

Info Parameters 11-21
Infolnput 10-31
Information Input 6-43, 6-46
Input Functions 9-22
Instrument Parameters 11-3
INT_MODE 12-27
Integration 10-19, 11-20
Interface 1-1, 2-1, 7-4, 12-1
Inverse FT 11-14
InverseFT 10-14

Item 2-7

J

Java Script 2-8

JavaScript 8-9, 13-23
JCAMP Parameters 11-24
JCAMP Setup 11-21
Jump Instructions 5-19

K

Keywords 5-1, 9-7
KILL_MACRO 12-24
KramersKronig 10-15

Kramers-Kronig Transformation 11-14

L

Label 6-51, 6-53, 9-17

Label Control 13-29
Language 5-1

LibraryEdit 10-30
Librarylnitialize 10-29
LibrarySearchinfo 10-25
LibrarySearchSpectrum 10-27

LibrarySearchStructure 10-27
LibraryStore 10-29

ListBox Control 13-29

Load 6-17, 6-18, 6-27, 6-60
LOAD_ EXPERIMENT 12-44
LOAD _FILE 12-17

LoadFile 6-20, 9-28

L oadReference 10-24

Log File5-15

Loops 5-20, 13-9

M

Macro Converter 5-13
Macro Editor 5-2, 6-1
Macro Parameters 11-21
MACRO_RESULTS 12-23
Macros 2-8, 3-2, 5-1
aborting 5-12
automatic stop 5-13
conversion 5-13
debugging 5-11
execution 5-9
included in Tool Bar 2-11
including OPUS commands 10-1
05/25-14
portable 5-21
Single Step 5-11
Stop Marks 5-12
sub routine calls 5-11
syntax 5-1, 6-1
time behaviour 5-19
writing 5-1, 5-2, 6-1
Make Compatible 11-19
MakeCompatible 10-15
Manipulate GC Blocks 11-23
MATRIX_ELEMENT 12-38
MATRIX_INFO 12-37
Maximize 13-24
MEASURE_SAMPLE 12-42

Measurement 6-3, 6-6, 6-8, 6-11, 6-13, 8-4,

10-23
M easurement Commands 5-16, 10-4
Merge 10-16

Message 6-11, 6-13, 6-47, 6-51, 6-53, 6-55,
6-60, 6-64, 6-65, 6-67, 6-68, 6-71, 6-75, 9-

20

Microsoft Forms 2-8, 13-27
Microsoft Scripting Engine 2-8
Minimize 13-24

Miscellaneous OPUS Functions 10-33
Multipage Control 13-29

N

Named Pipe 2-3, 2-7, 3-2,5-21, 7-4
NEW_WINDOW 12-30

NewForm 13-25

Normalization 6-17, 6-18, 6-20, 6-27, 11-18
Normalize 6-60, 10-16

O

Objects 8-2
OLE Interface 1-1, 4-1
OnLoad 13-27
OnOpusinform 13-27
OnOpusResult 13-27
OnUnLoad 13-27
OpenDisplayWindow 9-32
OpenForm 13-25
OptionButton Control 13-30
OPUS Commands 5-7, 10-1
OPUS Evauation Functions 10-19
OPUS File Functions 10-21
OPUS Files 2-1
OPUS Functions 3-1, 8-4

Syntax 10-1
OPUS functions 3-1
OPUS Library Functions 10-25
OPUS Manipulation Functions 10-8
OPUS Measurement Functions 10-23
OPUS Task 2-6
OPUS PARAMETERS 12-21
OpusCommand 13-25
OpusExecute 13-25
OPUS-0S/2 2-1, 5-17, 7-10, 12-2
OpusRequest 13-26
OpusRequestData 13-26
Output Functions 9-26
OVERWRITE 12-25

P

PACKET_AVAILABLE 12-45
Parameter for the Library Search 11-23
Parameter List 9-7
PARAMETER SECTION 5-1, 9-1, 9-7
ParameterEditor 10-34
Parameters 2-4, 2-10, 3-1, 5-8, 12-2
assigning 5-18
Reference 11-1

Parameters for Post-Run Extraction 11-21
Parameters of OPUS Functions 11-11
Parameters of the Optics 11-11
Path 2-3, 5-22
Peak Picking 6-6, 6-8, 6-11, 6-13, 6-34, 6-
48, 6-71, 11-16
PeakPick 10-19
Pipe Parameters 11-25
Plot 6-78, 10-35
Plot Parameters 11-25
Plot Report Parameters 11-20
Poke 2-6
POSITION_WINDOW 12-31
Post-FT ZFF 11-13
PostFT Zerofill 10-16
Post-Search Specturm Extraction 11-3
PRESERVE 12-25
Print 5-19
PrintToFile 9-27
Procedures

Forwarding Data 13-13
PROGRAM SECTION 5-1, 9-1, 9-6
Program Settings Page 2-5
Program Termination 2-6, 5-21
Programming languages 2-8

Q

Quality Test 11-17
Quant 11-20

R

Raman Correction 11-17
RamanCorrection 10-17
Rapid Scan TRS 11-24

Read Datapoint Table 11-24
READ DATA 12-12
READ_FROM_BLOCK 12-7
READ_FROM_ENTRY 12-4
READ _FROM FILE 12-5
READ_HEADER 12-10
READ_PARAMETER 12-21
ReadTextFile 9-25

REM 5-1

Rename 9-30

Report blocks 2-1

REPORT _INFO 12-36
Request 2-7

REQUEST _MODE 12-41
Restore 10-21, 13-24

Return Value 9-7, 12-2
Run to Breakpoint 5-12
RUN_MACRO 12-22
RunMacro 6-67

S

SN Ratio 11-3, 11-11
Sample Parameters 11-1
Save 6-32, 10-22, 11-24
Save As6-32, 11-24
SaveAs 10-22
SaveReference 10-24
SaveVars 9-15
Scalar Data 13-4
ScanPath 6-27, 9-29
Script 2-9
Script Commands 13-1
Script Termination 2-9
Scripting Editor 2-10, 8-1, 8-9
Scripting Engine 13-23
Scripting Interface 3-2
Scripts

access 2-8

auto-start 2-12
ScrollBar Control 13-30
Search Command 5-3
Search Variable 5-3
Select File/Program 2-3
Select Files/Script Page 2-9
Send File 11-24
SendCommand 10-24
SendFile 10-23
Server Name 2-7
SET_WINDOW 12-30
SetColor 9-33
SetDisplayLimits 9-33
SetResult 13-26
SetWindowPos 13-26
Show 13-24
ShowControl 13-26
SignalToNoise 10-20
Simulation 11-21
Smooth 10-17
Smoothing 11-2, 11-15

Special Macro Commands 5-4, 6-9

Spectral Data 8-7

Spectrum Calculator 6-71, 11-19

SpinButton Control 13-30
Spreadsheets 8-5

Standard Parameters 11-1

Start Program Checkbox 2-4
START_MACRO 12-18

StartL oop 6-8, 6-11, 6-13, 6-20, 6-27, 6-33,
6-34, 6-36, 6-39, 6-47, 6-61, 6-71, 6-75, 9-
16

StaticMessage 6-61, 9-21

Step into Submacro 5-12

Stop Mark 5-12

STOP_THREAD 12-43

StraightLine 10-18

Strings 5-1

Sub Procedures 13-12

Sub Routines 5-11, 5-16

Subtract 10-18, 11-12

Symmetric FT 11-14

System Directories 5-18

System Functions 9-12

System Variables 5-15

T

TabStrip Control 13-31
TAKE_REFERENCE 12-41
Temperature Control 11-23
TextBox Control 13-31
TextToFile 6-75, 9-26

Time behaviour 8-6

Time Control Functions 9-30
TIMEOUT 12-26

Timer 6-61, 6-64, 6-65, 9-31
Timer Control 13-32
ToggleButton Control 13-31
Tool Bar 2-11

Tool bar 5-2

Topic 2-7

Trace Calculation 11-22

U

UnDisplaySpectrum 9-33

Unload 6-32, 10-23

UNLOAD_FILE 12-17

UPDATE_BENCH 12-35

User Dialog 6-53

User Interface Functions 9-20

User-Defined Labels 11-2

UserDialog 5-20, 6-13, 6-18, 6-20, 6-27, 6-
31, 6-32, 6-33, 6-34, 6-36, 6-41, 6-43, 6-51,
6-55, 6-60, 6-68, 6-71, 6-77, 9-21, 9-22

Vv

Variable Dialog Box 5-6

Variables5-1, 5-17, 6-1
array 9-3
boolean 6-2
BUTTON 9-4
Constants 13-5
declaration 5-3, 9-2
FILE 9-3
file 6-2
Life Time 13-3
Names 13-3
numerical 6-2
Scope 13-15
selection 5-17
text 6-2
type 6-2, 9-1
type conversion 6-3
update 9-4
Validity 13-3
Values 13-3
VBScript 13-2

VARIABLES SECTION 5-1, 9-1

Variant 13-1

VBScript 2-1, 2-8, 8-1, 10-36, 13-1

Coding Converntions 13-14
Constants 13-14
Data Types 13-1
File Handling 13-21
Functions 13-18
Objects 13-16
Operators 13-5
Prozedures 13-12
System Handling 13-21
Variables 13-15
VBScripts
Debugging 13-32
Virtual Dos Machine 2-5
Visible 13-24
VisualBasic 7-1

w

Wavenumber conversion 11-20
While...Wend 13-11

Windows 2-1, 2-5, 5-2, 8-2
Write Datapoint Table 11-24
WRITE_DATA 12-14
WRITE_HEADER 12-13
WRITE_PARAMETER 12-22

WRITE_TO_BLOCK 12-8
WRITE_TO_ENTRY 12-5
WRITE_TO_FILE 12-6
Writing software 2-7

X
x Point Adaption 11-22

	1 Programming, Controlling and Communication with OPUS-NT 1-1
	1.1 Methods of Flow Control 1-1
	1.2 Interfaces 1-1

	2 Programs running under OPUS-NT 2-1
	2.1 External Programs 2-1
	2.1.1 The External Program Command 2-2
	2.1.2 The Select File/Program Page 2-3
	2.1.3 The Program Settings Page 2-5
	2.1.4 The DDE Command Page 2-6
	2.1.5 Writing software 2-7

	2.2 Macros 2-8
	2.3 VBScripts 2-8
	2.3.1 Accessing Scripts 2-8
	2.3.2 The Select Files/Script Page 2-9
	2.3.3 Generating a Script 2-10

	2.4 Including Macros and Scripts in the Tool Bar 2-11
	2.5 Auto-starting a Script 2-12

	3 Calling OPUS Functions 3-1
	4 Controlling External Programs 4-1
	5 OPUS-NT Macro Language 5-1
	5.1 Creating Macros 5-1
	5.2 General Syntax Rules 5-1
	5.3 Macro Keyword REM 5-2
	5.4 The Macro Editor 5-2
	5.4.1 General 5-2
	5.4.2 Special Commands 5-4
	5.4.3 The Variable Dialog Box 5-6
	5.4.4 Inserting OPUS Commands 5-7
	5.4.5 Editing OPUS Command Lines 5-8

	5.5 Debugging Macros 5-9
	5.5.1 Stepping Through a Macro 5-11
	5.5.2 Calling Sub Routines 5-11
	5.5.3 Placing Stop Marks 5-12
	5.5.4 Aborting a Macro 5-12
	5.5.5 Automatic Stop 5-13
	5.5.6 Error Messages 5-13

	5.6 Compiling Macros 5-13
	5.7 Macro Converter 5-13
	5.7.1 Variables 5-16
	5.7.1.1 Variable Conversion 5-16
	5.7.1.2 Combobox Variables 5-17
	5.7.1.3 Selecting Variables 5-17

	5.7.2 Differences in File Handling 5-17
	5.7.3 System Directories 5-18
	5.7.4 Function Parameters and Parameter Assignment 5-18
	5.7.5 Time-behavior of Macros 5-19
	5.7.6 Print Functions 5-19
	5.7.7 Calculations with Variables 5-19
	5.7.8 Jump Instructions 5-19
	5.7.9 Start Loop with For Each Option 5-20
	5.7.10 Load Multiple Files 5-20
	5.7.11 User Dialogs 5-20
	5.7.12 Client/Server Calls 5-20
	5.7.13 Conversion Functions 5-21

	5.8 Writing Portable Macros 5-21

	6 How to Write Macros 6-1
	6.1 General Remarks 6-1
	6.1.1 Syntax 6-1
	6.1.2 The Use of Variables 6-1
	6.1.3 Variable Names 6-2
	6.1.4 Variable Types 6-2
	6.1.5 Variable Type Conversion 6-3

	6.2 Measure 1 – A Simple Macro 6-3
	6.3 Measure 2 – A Macro Including Data Manipulation 6-6
	6.4 Measure 3 – Repeated Data Acquisition Using a Loop 6-8
	6.5 Measure 4 – Interacting with the User 6-11
	6.6 Measure 5 – Variable Loop Counters 6-13
	6.7 Load 1 – Loading and Processing a Spectrum 6-16
	6.8 Load 2 – Loading and Processing �Several Spectra 6-18
	6.9 Load 3 – Multiple File Processing 6-20
	6.10 Load 4 – Multiple File Processing 6-26
	6.11 Manipulation 1 – Processing of Files Already Loaded 6-29
	6.12 Manipulation 2 – Processing of Files Already Loaded 6-30
	6.13 Manipulation 2a – Saving Processed Files 6-31
	6.14 Manipulation 3 – Processing of Multiple Files Already Loaded 6-33
	6.15 Manipulation 4 – Multiple File Pro�cessing Using Variable Parameters 6-34
	6.16 Average 1 – Averaging Spectra 6-36
	6.17 Average 2 – Averaging Spectra In�cluding the Standard Deviation 6-39
	6.18 Parameter 1 – Reading Out Spectrum Parameters 6-41
	6.19 Parameter 2 – Generating Info Blocks 6-43
	6.20 Parameter 3 – Replacing Info Block Entries 6-46
	6.21 Parameter 4 – Read From a Report 6-47
	6.22 Control 1 – Controlling a Macro Using Buttons 6-50
	6.23 Control 1a – Controlling a Macro Using Buttons 6-53
	6.24 Control 2 – Controlling a Macro Using If, Else And Elseif 6-54
	6.25 Control 3 – Error Handling 6-60
	6.26 Timer 1 – Timer Function With Delay Time 6-61
	6.27 Timer 2 – Timer Function Using a Clock 6-64
	6.28 Timer 3 – Timer Function Using the If Statement 6-65
	6.29 Main 1 – Calling Sub Routines with �RunMacro 6-67
	6.30 Main 2 – Calling Sub Routines with �CallMacro 6-68
	6.31 Main 3 – Returning Values From a Sub Routine 6-71
	6.32 Output 1 – Directing Output to a File 6-75
	6.33 Output 2 – Plotting Spectra 6-77

	7 Writing External Programs 7-1
	7.1 A Basic Program with DDE Communication Capability 7-1
	7.1.1 Initializing the Connection 7-1
	7.1.2 Processing the Commands 7-2
	7.1.3 Notification and Result 7-3
	7.1.4 Error Handling 7-3
	7.1.5 Program Termination 7-4

	7.2 A C Program Using the Pipe Interface 7-4
	7.2.1 Establishing a Connection 7-5
	7.2.2 Client/Server Commands 7-5
	7.2.3 Data Manipulation 7-7
	7.2.4 Reading Data from the Pipe 7-8
	7.2.5 Changes compared to OPUS-OS/2 7-10
	7.2.6 Miscellaneous 7-10

	8 Creating Scripts 8-1
	8.1 VisualBasic Script 8-1
	8.1.1 Generating Forms and Buttons 8-1
	8.1.2 Objects and Events 8-2
	8.1.3 OPUS Functions 8-4
	8.1.4 Performing Measurements 8-4
	8.1.5 Accessing Spreadsheets 8-5
	8.1.6 Repeated Calls Using a Timer 8-6
	8.1.7 Accessing Spectral Data 8-7

	8.2 JavaScript 8-9

	9 Macro Command Reference 9-1
	9.1 VARIABLES Section 9-1
	9.1.1 Variable Types 9-2
	9.1.2 Variable Declaration for STRING, NUMERIC and BOOL 9-2
	9.1.3 Variable Declaration for FILE 9-3
	9.1.4 Variable Declaration for BUTTON 9-4
	9.1.5 Marking a Variable for Update 9-4
	9.1.6 Special Characters 9-5

	9.2 PROGRAM Section 9-6
	9.2.1 General Command Syntax 9-6
	9.2.2 Command Names 9-6
	9.2.3 Command Arguments 9-6

	9.3 PARAMETER Section 9-7
	9.4 Macro Functions Sorted Alphabetically 9-8
	9.5 Functions Sorted by Categories 9-10
	9.6 System Functions 9-12
	9.6.1 GetOpusPath 9-12
	9.6.2 GetUserPath 9-12
	9.6.3 GetMacroPath 9-13
	9.6.4 GetVersion 9-13
	9.6.5 GetArrayCount 9-13
	9.6.6 GetLength 9-14
	9.6.7 FindString 9-14
	9.6.8 CallMacro 9-15
	9.6.9 SaveVars 9-15

	9.7 Flow Control Functions 9-16
	9.7.1 StartLoop 9-16
	9.7.2 EndLoop 9-17
	9.7.3 Goto 9-17
	9.7.4 Label 9-17
	9.7.5 If ... Else ... Endif 9-18

	9.8 User Interface Functions 9-20
	9.8.1 Message 9-20
	9.8.2 StaticMessage 9-21
	9.8.3 UserDialog 9-21

	9.9 Input Functions 9-22
	9.9.1 Enter Expression 9-23
	9.9.2 GetParameter 9-24
	9.9.3 FromReportHeader 9-24
	9.9.4 FromReportMatrix 9-25
	9.9.5 ReadTextFile 9-25
	9.9.6 GetEnumList 9-25

	9.10 Output Functions 9-26
	9.10.1 TextToFile 9-26
	9.10.2 PrintToFile 9-27

	9.11 File Functions 9-27
	9.11.1 LoadFile 9-28
	9.11.2 ScanPath 9-29
	9.11.3 Copy 9-29
	9.11.4 Rename 9-30
	9.11.5 Delete 9-30

	9.12 Time Control Functions 9-30
	9.12.1 GetTime 9-30
	9.12.2 Timer 9-31

	9.13 Display Functions 9-31
	9.13.1 OpenDisplayWindow 9-32
	9.13.2 CloseDisplayWindow 9-32
	9.13.3 DisplaySpectrum 9-32
	9.13.4 UnDisplaySpectrum 9-33
	9.13.5 GetDisplayLimits 9-33
	9.13.6 SetDisplayLimits 9-33
	9.13.7 SetColor 9-33

	10 OPUS Command Reference 10-1
	10.1 Command Syntax of OPUS Functions 10-1
	10.2 Including OPUS Commands in Macros 10-1
	10.3 Measurement Commands 10-4
	10.4 Reference Section 10-5
	10.5 OPUS Functions Sorted Alphabetically 10-5
	10.6 OPUS Functions Sorted by Type 10-7
	10.7 OPUS Manipulation Functions 10-8
	10.7.1 ABTR 10-8
	10.7.2 Average 10-9
	10.7.3 Baseline 10-10
	10.7.4 BlackBody 10-10
	10.7.5 Convert 10-10
	10.7.6 Cut 10-11
	10.7.7 Deconvolution 10-11
	10.7.8 Derivative 10-12
	10.7.9 Extrapolation 10-12
	10.7.10 FFT 10-12
	10.7.11 FreqCalibration 10-14
	10.7.12 InverseFT 10-14
	10.7.13 KramersKronig 10-15
	10.7.14 MakeCompatible 10-15
	10.7.15 Merge 10-16
	10.7.16 Normalize 10-16
	10.7.17 PostFTZerofill 10-16
	10.7.18 RamanCorrection 10-17
	10.7.19 Smooth 10-17
	10.7.20 StraightLine 10-18
	10.7.21 Subtract 10-18

	10.8 OPUS Evaluation Functions 10-19
	10.8.1 Integrate 10-19
	10.8.2 PeakPick 10-19
	10.8.3 SignalToNoise 10-20

	10.9 OPUS File Functions 10-21
	10.9.1 ChangeDataBlockType 10-21
	10.9.2 CopyDataBlock 10-21
	10.9.3 DeleteDataBlock 10-21
	10.9.4 Restore 10-21
	10.9.5 Save, SaveAs 10-22
	10.9.6 SendFile 10-23
	10.9.7 Unload 10-23

	10.10 OPUS Measurement Functions 10-23
	10.10.1 Measurement Commands 10-23
	10.10.2 SendCommand 10-24
	10.10.3 SaveReference 10-24
	10.10.4 LoadReference 10-24

	10.11 OPUS Library Functions 10-25
	10.11.1 LibrarySearchInfo 10-25
	10.11.2 LibrarySearchPeak 10-25
	10.11.3 LibrarySearchStructure 10-27
	10.11.4 LibrarySearchSpectrum 10-27
	10.11.5 LibraryInitialize 10-29
	10.11.6 LibraryStore 10-29
	10.11.7 LibraryEdit 10-30
	10.11.8 InfoInput 10-31

	10.12 Miscellaneous OPUS Functions 10-33
	10.12.1 ExternalProgram 10-33
	10.12.2 ParameterEditor 10-34
	10.12.3 Plot 10-35
	10.12.4 VBScript 10-36

	11 OPUS Parameter Reference 11-1
	12 The C/S-Interpreter and its Commands 12-1
	12.1 Overview of Available Functions 12-1
	12.2 Commands and Command Syntax 12-1
	12.3 Old C/S Commands 12-2
	12.3.1 Overview 12-2
	12.3.2 CLOSE_PIPE 12-3
	12.3.3 COUNT_ENTRIES 12-3
	12.3.4 READ_FROM_ENTRY 12-4
	12.3.5 WRITE_TO_ENTRY 12-5
	12.3.6 READ_FROM_FILE 12-5
	12.3.7 WRITE_TO_FILE 12-6
	12.3.8 READ_FROM_BLOCK 12-7
	12.3.9 WRITE_TO_BLOCK 12-8
	12.3.10 ASCII 12-9
	12.3.11 BINARY 12-9
	12.3.12 DATA_VALUES 12-9
	12.3.13 DATA_POINTS 12-10
	12.3.14 READ_HEADER 12-10
	12.3.15 READ_DATA 12-12
	12.3.16 WRITE_HEADER 12-13
	12.3.17 WRITE_DATA 12-14
	12.3.18 COPY_DATA 12-16
	12.3.19 LOAD_FILE 12-17
	12.3.20 UNLOAD_FILE 12-17
	12.3.21 START_MACRO 12-18
	12.3.22 FILE_PARAMETERS 12-20
	12.3.23 OPUS_PARAMETERS 12-21
	12.3.24 READ_PARAMETER 12-21
	12.3.25 WRITE_PARAMETER 12-22
	12.3.26 RUN_MACRO 12-22
	12.3.27 MACRO_RESULTS 12-23
	12.3.28 KILL_MACRO 12-24

	12.4 Obsolete Commands 12-25
	12.4.1 OVERWRITE 12-25
	12.4.2 PRESERVE 12-25
	12.4.3 TIMEOUT 12-26

	12.5 New Commands 12-27
	12.5.1 BYTE_MODE 12-27
	12.5.2 INT_MODE 12-27
	12.5.3 FLOAT_MODE 12-28
	12.5.4 DOUBLE_MODE 12-28
	12.5.5 HEXSTRING_MODE 12-28
	12.5.6 FLOATCONV_MODE 12-29
	12.5.7 GET_DISPLAY 12-29
	12.5.8 SET_WINDOW 12-30
	12.5.9 NEW_WINDOW 12-30
	12.5.10 CLOSE_WINDOW 12-31
	12.5.11 POSITION_WINDOW 12-31
	12.5.12 GET_LANGUAGE 12-32
	12.5.13 GET_OPUSPATH 12-32
	12.5.14 GET_BASEPATH 12-33
	12.5.15 GET_DATAPATH 12-33
	12.5.16 GET_WORKPATH 12-33
	12.5.17 GET_USERNAME 12-34
	12.5.18 GET_BENCH 12-34
	12.5.19 UPDATE_BENCH 12-35
	12.5.20 COMMAND_SAY 12-35
	12.5.21 REPORT_INFO 12-36
	12.5.22 HEADER_INFO 12-36
	12.5.23 MATRIX_INFO 12-37
	12.5.24 MATRIX_ELEMENT 12-38
	12.5.25 HEADER_ELEMENT 12-39
	12.5.26 COMMAND_MODE 12-40
	12.5.27 EXECUTE_MODE 12-40
	12.5.28 REQUEST_MODE 12-41
	12.5.29 CLOSE_OPUS 12-41
	12.5.30 TAKE_REFERENCE 12-41
	12.5.31 MEASURE_SAMPLE 12-42
	12.5.32 COMMAND_LINE 12-43
	12.5.33 STOP_THREAD 12-43
	12.5.34 ACTIVATE_DIALOG 12-44
	12.5.35 LOAD_EXPERIMENT 12-44
	12.5.36 GET_USERRIGHTS 12-45
	12.5.37 PACKET_AVAILABLE 12-45
	12.5.38 GET_CLIENTAREA 12-46
	12.5.39 ACTIVATE_DISPLAY 12-46
	12.5.40 GET_LIMITS 12-47
	12.5.41 SET_LIMITS 12-47
	12.5.42 DISPLAY_BLOCK 12-48
	12.5.43 UNDISPLAY_BLOCK 12-49
	12.5.44 ENUM_STRINGS 12-49
	12.5.45 GET_VERSION 12-50
	12.5.46 ASK_THREAD 12-50
	12.5.47 FIND_FUNCTION 12-51
	12.5.48 WORKBOOK_MODE 12-52
	12.5.49 GET_SELECTED 12-52
	12.5.50 LIST_BLOCKS 12-53
	12.5.51 SHOW_TOOLBAR 12-53
	12.5.52 HIDE_TOOLBAR 12-54
	12.5.53 QUICK_PRINT 12-55

	13 Script Commands 13-1
	13.1 The C/S Interpreter 13-1
	13.2 VBScript Language 13-1
	13.2.1 VBScript Data Types 13-1
	13.2.2 VBScript Variables 13-2
	13.2.3 VBScript Constants 13-5
	13.2.4 VBScript Operators 13-5
	13.2.5 Using Conditional Statements to Control Program Execution 13-6
	13.2.6 Loops 13-9
	13.2.6.1 Using While...Wend 13-11

	13.2.7 VBScript Procedures 13-12
	13.2.8 VBScript Coding Converntions 13-14
	13.2.9 VBScript Functions 13-18
	13.2.10 File and System Handling 13-21

	13.3 JavaScript 13-23
	13.4 Functions/Events of Forms 13-24
	13.5 Microsoft Forms 13-27
	13.5.1 Checkbox 13-28
	13.5.2 Combobox Control 13-28
	13.5.3 CommandButton 13-28
	13.5.4 Frame Control 13-28
	13.5.5 Image Control 13-29
	13.5.6 Label Control 13-29
	13.5.7 ListBox Control 13-29
	13.5.8 Multipage Control 13-29
	13.5.9 OptionButton Control 13-30
	13.5.10 ScrollBar Control 13-30
	13.5.11 SpinButton Control 13-30
	13.5.12 TabStrip Control 13-31
	13.5.13 TextBox Control 13-31
	13.5.14 ToggleButton Control 13-31
	13.5.15 Timer Control 13-32
	13.5.16 Debugging Scripts 13-32

	1 Programming, Controlling and Communication with OPUS-NT
	1.1 Methods of Flow Control
	1.2 Interfaces

	2 Programs running under OPUS-NT
	2.1 External Programs
	2.1.1 The External Program Command
	2.1.2 The Select File/Program Page
	2.1.3 The Program Settings Page
	2.1.4 The DDE Command Page
	2.1.5 Writing software

	2.2 Macros
	2.3 VBScripts
	2.3.1 Accessing Scripts
	2.3.2 The Select Files/Script Page
	2.3.3 Generating a Script

	2.4 Including Macros and Scripts in the Tool Bar
	2.5 Auto-starting a Script

	3 Calling OPUS Functions
	4 Controlling External Programs
	5 OPUS-NT Macro Language
	5.1 Creating Macros
	5.2 General Syntax Rules
	5.3 Macro Keyword REM
	5.4 The Macro Editor
	5.4.1 General
	5.4.2 Special Commands
	5.4.3 The Variable Dialog Box
	5.4.4 Inserting OPUS Commands
	5.4.5 Editing OPUS Command Lines

	5.5 Debugging Macros
	5.5.1 Stepping Through a Macro
	5.5.2 Calling Sub Routines
	5.5.3 Placing Stop Marks
	5.5.4 Aborting a Macro
	5.5.5 Automatic Stop
	5.5.6 Error Messages

	5.6 Compiling Macros
	5.7 Macro Converter
	5.7.1 Variables
	5.7.1.1 Variable Conversion
	5.7.1.2 Combobox Variables
	5.7.1.3 Selecting Variables

	5.7.2 Differences in File Handling
	5.7.3 System Directories
	5.7.4 Function Parameters and Parameter Assignment
	5.7.5 Time-behavior of Macros
	5.7.6 Print Functions
	5.7.7 Calculations with Variables
	5.7.8 Jump Instructions
	5.7.9 Start Loop with For Each Option
	5.7.10 Load Multiple Files
	5.7.11 User Dialogs
	5.7.12 Client/Server Calls
	5.7.13 Conversion Functions

	5.8 Writing Portable Macros

	6 How to Write Macros
	6.1 General Remarks
	6.1.1 Syntax
	6.1.2 The Use of Variables
	6.1.3 Variable Names
	6.1.4 Variable Types
	6.1.5 Variable Type Conversion

	6.2 Measure 1 – A Simple Macro
	6.3 Measure 2 – A Macro Including Data Manipulation
	6.4 Measure 3 – Repeated Data Acquisition Using a Loop
	6.5 Measure 4 – Interacting with the User
	6.6 Measure 5 – Variable Loop Counters
	6.7 Load 1 – Loading and Processing a Spectrum
	6.8 Load 2 – Loading and Processing �Several Spectra
	6.9 Load 3 – Multiple File Processing
	6.10 Load 4 – Multiple File Processing
	6.11 Manipulation 1 – Processing of Files Already Loaded
	6.12 Manipulation 2 – Processing of Files Already Loaded
	6.13 Manipulation 2a – Saving Processed Files
	6.14 Manipulation 3 – Processing of Multiple Files Already Loaded
	6.15 Manipulation 4 – Multiple File Pro�cessing Using Variable Parameters
	6.16 Average 1 – Averaging Spectra
	6.17 Average 2 – Averaging Spectra In�cluding the Standard Deviation
	6.18 Parameter 1 – Reading Out Spectrum Parameters
	6.19 Parameter 2 – Generating Info Blocks
	6.20 Parameter 3 – Replacing Info Block Entries
	6.21 Parameter 4 – Read From a Report
	6.22 Control 1 – Controlling a Macro Using Buttons
	6.23 Control 1a – Controlling a Macro Using Buttons
	6.24 Control 2 – Controlling a Macro Using If, Else And Elseif
	6.25 Control 3 – Error Handling
	6.26 Timer 1 – Timer Function With Delay Time
	6.27 Timer 2 – Timer Function Using a Clock
	6.28 Timer 3 – Timer Function Using the If Statement
	6.29 Main 1 – Calling Sub Routines with �RunMacro
	6.30 Main 2 – Calling Sub Routines with �CallMacro
	6.31 Main 3 – Returning Values From a Sub Routine
	6.32 Output 1 – Directing Output to a File
	6.33 Output 2 – Plotting Spectra

	7 Writing External Programs
	7.1 A Basic Program with DDE Communication Capability
	7.1.1 Initializing the Connection
	7.1.2 Processing the Commands
	7.1.3 Notification and Result
	7.1.4 Error Handling
	7.1.5 Program Termination

	7.2 A C Program Using the Pipe Interface
	7.2.6 Establishing a Connection
	7.2.7 Client/Server Commands
	7.2.8 Data Manipulation
	7.2.9 Reading Data from the Pipe
	7.2.10 Changes compared to OPUS-OS/2
	7.2.11 Miscellaneous

	8 Creating Scripts
	8.1 VisualBasic Script
	8.1.1 Generating Forms and Buttons
	8.1.2 Objects and Events
	8.1.3 OPUS Functions
	8.1.4 Performing Measurements
	8.1.5 Accessing Spreadsheets
	8.1.6 Repeated Calls Using a Timer
	8.1.7 Accessing Spectral Data

	8.2 JavaScript

	9 Macro Command Reference
	9.1 VARIABLES Section
	9.1.1 Variable Types
	9.1.2 Variable Declaration for STRING, NUMERIC and BOOL
	9.1.3 Variable Declaration for FILE
	9.1.4 Variable Declaration for BUTTON
	9.1.5 Marking a Variable for Update
	9.1.6 Special Characters

	9.2 PROGRAM Section
	9.2.1 General Command Syntax
	9.2.2 Command Names
	9.2.3 Command Arguments

	9.3 PARAMETER Section
	9.4 Macro Functions Sorted Alphabetically
	9.5 Functions Sorted by Categories
	9.6 System Functions
	9.6.1 GetOpusPath
	9.6.2 GetUserPath
	9.6.3 GetMacroPath
	9.6.4 GetVersion
	9.6.5 GetArrayCount
	9.6.6 GetLength
	9.6.7 FindString
	9.6.8 CallMacro
	9.6.9 SaveVars

	9.7 Flow Control Functions
	9.7.1 StartLoop
	9.7.2 EndLoop
	9.7.3 Goto
	9.7.4 Label
	9.7.5 If ... Else ... Endif

	9.8 User Interface Functions
	9.8.1 Message
	9.8.2 StaticMessage
	9.8.3 UserDialog

	9.9 Input Functions
	9.9.1 Enter Expression
	9.9.2 GetParameter
	9.9.3 FromReportHeader
	9.9.4 FromReportMatrix
	9.9.5 ReadTextFile
	9.9.6 GetEnumList

	9.10 Output Functions
	9.10.1 TextToFile
	9.10.2 PrintToFile

	9.11 File Functions
	9.11.1 LoadFile
	9.11.2 ScanPath
	9.11.3 Copy
	9.11.4 Rename
	9.11.5 Delete

	9.12 Time Control Functions
	9.12.1 GetTime
	9.12.2 Timer

	9.13 Display Functions
	9.13.1 OpenDisplayWindow
	9.13.2 CloseDisplayWindow
	9.13.3 DisplaySpectrum
	9.13.4 UnDisplaySpectrum
	9.13.5 GetDisplayLimits
	9.13.6 SetDisplayLimits
	9.13.7 SetColor

	10 OPUS Command Reference
	10.1 Command Syntax of OPUS Functions
	10.2 Including OPUS Commands in Macros
	10.3 Measurement Commands
	10.4 Reference Section
	10.5 OPUS Functions Sorted Alphabetically
	10.6 OPUS Functions Sorted by Type
	10.7 OPUS Manipulation Functions
	10.7.1 ABTR
	10.7.2 Average
	10.7.3 Baseline
	10.7.4 BlackBody
	10.7.5 Convert
	10.7.6 Cut
	10.7.7 Deconvolution
	10.7.8 Derivative
	10.7.9 Extrapolation
	10.7.10 FFT
	10.7.11 FreqCalibration
	10.7.12 InverseFT
	10.7.13 KramersKronig
	10.7.14 MakeCompatible
	10.7.15 Merge
	10.7.16 Normalize
	10.7.17 PostFTZerofill
	10.7.18 RamanCorrection
	10.7.19 Smooth
	10.7.20 StraightLine
	10.7.21 Subtract

	10.8 OPUS Evaluation Functions
	10.8.1 Integrate
	10.8.2 PeakPick
	10.8.3 SignalToNoise

	10.9 OPUS File Functions
	10.9.1 ChangeDataBlockType
	10.9.2 CopyDataBlock
	10.9.3 DeleteDataBlock
	10.9.4 Restore
	10.9.5 Save, SaveAs
	10.9.6 SendFile
	10.9.7 Unload

	10.10 OPUS Measurement Functions
	10.10.1 Measurement Commands
	10.10.2 SendCommand
	10.10.3 SaveReference
	10.10.4 LoadReference

	10.11 OPUS Library Functions
	10.11.1 LibrarySearchInfo
	10.11.2 LibrarySearchPeak
	10.11.3 LibrarySearchStructure
	10.11.4 LibrarySearchSpectrum
	10.11.5 LibraryInitialize
	10.11.6 LibraryStore
	10.11.7 LibraryEdit
	10.11.8 InfoInput

	10.12 Miscellaneous OPUS Functions
	10.12.1 ExternalProgram
	10.12.2 ParameterEditor
	10.12.3 Plot
	10.12.4 VBScript

	11 OPUS Parameter Reference
	12 The C/S-Interpreter and its Commands
	12.1 Overview of Available Functions
	12.2 Commands and Command Syntax
	12.3 Old C/S Commands
	12.3.1 Overview
	12.3.2 CLOSE_PIPE
	12.3.3 COUNT_ENTRIES
	12.3.4 READ_FROM_ENTRY
	12.3.5 WRITE_TO_ENTRY
	12.3.6 READ_FROM_FILE
	12.3.7 WRITE_TO_FILE
	12.3.8 READ_FROM_BLOCK
	12.3.9 WRITE_TO_BLOCK
	12.3.10 ASCII
	12.3.11 BINARY
	12.3.12 DATA_VALUES
	12.3.13 DATA_POINTS
	12.3.14 READ_HEADER
	12.3.15 READ_DATA
	12.3.16 WRITE_HEADER
	12.3.17 WRITE_DATA
	12.3.18 COPY_DATA
	12.3.19 LOAD_FILE
	12.3.20 UNLOAD_FILE
	12.3.21 START_MACRO
	12.3.22 FILE_PARAMETERS
	12.3.23 OPUS_PARAMETERS
	12.3.24 READ_PARAMETER
	12.3.25 WRITE_PARAMETER
	12.3.26 RUN_MACRO
	12.3.27 MACRO_RESULTS
	12.3.28 KILL_MACRO

	12.4 Obsolete Commands
	12.4.1 OVERWRITE
	12.4.2 PRESERVE
	12.4.3 TIMEOUT

	12.5 New Commands
	12.5.1 BYTE_MODE
	12.5.2 INT_MODE
	12.5.3 FLOAT_MODE
	12.5.4 DOUBLE_MODE
	12.5.5 HEXSTRING_MODE
	12.5.6 FLOATCONV_MODE
	12.5.7 GET_DISPLAY
	12.5.8 SET_WINDOW
	12.5.9 NEW_WINDOW
	12.5.10 CLOSE_WINDOW
	12.5.11 POSITION_WINDOW
	12.5.12 GET_LANGUAGE
	12.5.13 GET_OPUSPATH
	12.5.14 GET_BASEPATH
	12.5.15 GET_DATAPATH
	12.5.16 GET_WORKPATH
	12.5.17 GET_USERNAME
	12.5.18 GET_BENCH
	12.5.19 UPDATE_BENCH
	12.5.20 COMMAND_SAY
	12.5.21 REPORT_INFO
	12.5.22 HEADER_INFO
	12.5.23 MATRIX_INFO
	12.5.24 MATRIX_ELEMENT
	12.5.25 HEADER_ELEMENT
	12.5.26 COMMAND_MODE
	12.5.27 EXECUTE_MODE
	12.5.28 REQUEST_MODE
	12.5.29 CLOSE_OPUS
	12.5.30 TAKE_REFERENCE
	12.5.31 MEASURE_SAMPLE
	12.5.32 COMMAND_LINE
	12.5.33 STOP_THREAD
	12.5.34 ACTIVATE_DIALOG
	12.5.35 LOAD_EXPERIMENT
	12.5.36 GET_USERRIGHTS
	12.5.37 PACKET_AVAILABLE
	12.5.38 GET_CLIENTAREA
	12.5.39 ACTIVATE_DISPLAY
	12.5.40 GET_LIMITS
	12.5.41 SET_LIMITS
	12.5.42 DISPLAY_BLOCK
	12.5.43 UNDISPLAY_BLOCK
	12.5.44 ENUM_STRINGS
	12.5.45 GET_VERSION
	12.5.46 ASK_THREAD
	12.5.47 FIND_FUNCTION
	12.5.48 WORKBOOK_MODE
	12.5.49 GET_SELECTED
	12.5.50 LIST_BLOCKS
	12.5.51 SHOW_TOOLBAR
	12.5.52 HIDE_TOOLBAR
	12.5.53 QUICK_PRINT

	13 Script Commands
	13.1 The C/S Interpreter
	13.2 VBScript Language
	13.2.1 VBScript Data Types
	13.2.2 VBScript Variables
	13.2.3 VBScript Constants
	13.2.4 VBScript Operators
	13.2.5 Using Conditional Statements to Control Program Execution
	13.2.6 Loops
	13.2.6.1 Using While...Wend

	13.2.7 VBScript Procedures
	13.2.8 VBScript Coding Converntions
	13.2.9 VBScript Functions
	13.2.10 File and System Handling

	13.3 JavaScript
	13.4 Functions/Events of Forms
	13.5 Microsoft Forms
	13.5.1 Checkbox
	13.5.2 Combobox Control
	13.5.3 CommandButton
	13.5.4 Frame Control
	13.5.5 Image Control
	13.5.6 Label Control
	13.5.7 ListBox Control
	13.5.8 Multipage Control
	13.5.9 OptionButton Control
	13.5.10 ScrollBar Control
	13.5.11 SpinButton Control
	13.5.12 TabStrip Control
	13.5.13 TextBox Control
	13.5.14 ToggleButton Control
	13.5.15 Timer Control
	13.5.16 Debugging Scripts

